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Measuring Asymmetries in Financial Returns: An
Empirical Investigation Using Local Gaussian

Correlation

Bård Støve and Dag Tjøstheim
Department of Mathematics, University of Bergen

PO Box 7803, 5020 Bergen, Norway

Abstract

A number of studies have provided evidence that financial returns exhibit asymmet-
ric dependence, such as increased dependence during bear markets, but there seems to
be no agreement as to how such asymmetries should be measured. We introduce the
use of a new measure of local dependence to study this asymmetry. The central idea
of the new approach is to approximate an arbitrary bivariate return distribution by
a family of Gaussian bivariate distributions. At each point of the return distribution
there is a Gaussian distribution that gives a good approximation at that point. The
correlation of the approximating Gaussian distribution is taken as the local correlation
in that neighbourhood. The new measure does not suffer from the selection bias of the
conditional correlation for Gaussian data, and is able to capture nonlinear dependence.
Analysing several financial returns from the US, UK, German and French market, we
confirm and are able to explicitly quantify the asymmetry. Finally, we discuss a risk
management application, and point out a number of possible extensions.
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1 Introduction

It is well documented that there are asymmetries in the distribution of financial returns
(Silvapulle and Granger 2001; Okimoto 2008; Ang and Chen 2002; Hong et al. 2007; Chollete
et al. 2009; Garcia and Tsafack 2011). For example, there are often stronger dependence
between returns of financial objects when the market is going down than when it is stable or
going up. It does not seem to be consensus, however, as to how the asymmetries should be
measured, quantitatively interpreted and tested for. In this paper we present a new approach
for analysing these issues.

One popular approach to analysing asymmetry has been to use the conditional correla-
tion. For time series {Xt} and {Yt} of two (log) returns, the conditional correlation between
X and Y when they are restricted to a set A is

ρA = corr(Xt, Yt | (Xt, Yt) ∈ A), (1)

where we assume at least stationarity for the series.
We define the exceedance correlation as the conditional correlation with A = (−∞,−c]×

(−∞,−c] or A = [c,∞) × [c,∞), where c > 0 is the exceedance level, and define truncated
correlations similarly, but where A only restricts one of the returns. An estimate of ρA can
be obtained by the ordinary correlation estimator applied to truncated variables.

The set A can be, and has been, chosen in many ways, and rather different results
are obtained depending on the conditioning strategy used (Campbell et al. 2008). The
multitude of conditioning methods used, and corresponding differences in interpretation,
have contributed to conditional correlation analysis being considered as quite problematic
despite its immediate intuitive appeal.

As an example, let us assume a bivariate Gaussian distribution with correlation ρ = 0.40
for some returns data. Using results from Boyer et al. (1999) on truncated correlations, and
conditioning on one of the returns being large, for example larger than its 75% quantile,
A = {(X, Y ) | X > q75}, the conditional correlation is reduced to ρA = 0.21 (and tending to
zero for increasing quantiles), while the conditional correlation on the complement set, ρA′ ,
is reduced to 0.30 (and tending to 0.40 for increasing quantiles). When analysing (Gaussian)
returns data and detecting such correlation values, one might be tempted to incorrectly
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conclude that the dependence has been lower in periods of large X-returns, and that it goes
to zero as X → ∞.

Conditioning on both returns being large or small (exceedance correlation), or lying in
various finite sets, again leads to different correlation values (see Campbell et al. 2008). As
remarked by Longin and Solnik (2001), ‘[i]t would be wrong to infer from this large difference
in conditional correlation that correlation differs between volatile and tranquil periods, as
correlation is constant and equal to [ρ] by assumption’.

In spite of the interpretational difficulties the bias effect has been sought adjusted for
(e.g., Campbell et al. 2002), and it is still possible to construct useful tests of asymmetry
in terms of conditional correlation; see Ang and Chen (2002). The test used in that paper
was model-dependent, but Hong et al. (2007) have designed a test based on a model-free
approach, and put it to effective use in a number of applications.

There are several alternative methods of studying asymmetry of financial returns. Sil-
vapulle and Granger (2001) have looked at various quantile estimation methods, and Longin
and Solnik (2001) have used extreme value theory to show that for monthly data there is a
bear effect, but no bull effect. Okimoto (2008) and Rodriguez (2007) have employed regime-
switching copulas to study asymmetric dependence for various international stock indices,
while Aas et al. (2009) and Nikoloulopoulos et al. (2012) have used vine copulas (also called
the pair-copula construction) to model multivariate financial return data. Related work is
Ang and Bekaert (2002) and Ang and Chen (2002), who have based themselves on Markov
regime structures with ARCH–GARCH modelling.

Also, in the statistical literature there exist methods for modelling and measuring local
dependence. Bjerve and Doksum (1993) (see also Blyth 1994) proposed a measure based on
localising a regression model, but this has the problem of not being symmetric in (X, Y ),
so that ρX,Y 6= ρY,X . Holland and Wang (1987) suggested a symmetric measure based on
limiting arguments starting from the odds ratios in a contingency model, but its range is
not from −1 to 1, and it does not reduce to the ordinary correlation – but is a function of
it – in the bivariate normal case. Further work on this measure has been done by Jones
(1996, 1998) and Jones and Koch (2003). However, none of these measures have had much
influence on the finance literature. Other global and local measures of dependence can be
found in the books of Drouet Mari and Kotz (2001) and Joe (1997).

A common feature for many of the alternative approaches is that one ends up with one or
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more parameters that have a rather indirect interpretation as a measure of dependence. In
this respect, correlation has a more natural basis, and in this paper we present an approach
based on the correlation concept, but from a very different angle than that of the conditional
correlation.

To introduce our new point of view, we first return to the conditional correlation ρA

in Equation (1), and note that in principle we can compute it for any set A, and if we have
sufficient number of observations, we can let the size of A be small, and in this way obtain
a conditional correlation in a small neighbourhood of a point (x, y). Such a localisation is a
basic feature of nonparametric analysis (see, for instance, Scott 1992), where the size of A
would be determined by a pair of bandwidths (b1, b2) in the x and y direction, respectively.
Asymptotically, as the number of observations increases, b1 and b2 can be made smaller,
making it possible to describe ever more fine details of the phenomenon under study.

Similar localisation is crucial in our new approach, but we do not use the conditional
correlation as defined in (1). The central idea is to approximate the general return density
f of (X,Y ) at a point (x, y) by a bivariate Gaussian density ψx,y. We take the correlation
ρ(x, y) of that Gaussian density as our measure of local dependence, and we call it the
local Gaussian correlation. Some of its theoretical properties are given in Tjøstheim and
Hufthammer (2013), one important property in the present context being that it is constant
over all (x, y) for a bivariate Gaussian distribution.

In Section 2 we explain this new approach in more detail in a return distribution context,
and demonstrate that it has a number of advantages compared to conditional correlation,
while Section 3 presents a brief overview of the theory. In Section 4 we apply it to stock
market indices such as S&P 500, FTSE 100, CAC 40 and DAX 30, using both monthly and
daily data. We present a risk management application in Section 5, and in Section 6 we
conclude, discuss limitations and point out possible extensions.
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2 Local Gaussian approximation and local correlation

The correlation ρ is primarily meaningful for a bivariate Gaussian density,

ψ
(
u, v, µ1, µ2, σ1, σ2, ρ

)
= 1

2πσ1σ2
√

1 − ρ2 exp

− 1
2
(
1 − ρ2

)[(u− µ1

σ1

)2

+
(
v − µ2

σ2

)2

− 2ρ
(
u− µ1

σ1

)(
v − µ2

σ2

)]. (2)

There are several precise interpretations of the correlation ρ or its estimate (see, for example,
Rodgers and Nicewander 1988; Rovine and von Eye 1997), but, most importantly, it com-
pletely describes the dependence structure of a pair of random variables (U, V ) having ψ as
its density, and it is invariant to linear transformations.

The bivariate return density f for two returns, X and Y , is never Gaussian, and in the
conditional correlation approach one tries to take care of this by computing the ordinary
(sample) correlation restricted to a set A, as described in the introduction, but we believe
that it is better to start with the density f itself, and approximate it, not the correlation,
locally. This local approximation is done with a family of Gaussian distributions such that at
each point (x, y), the density f(x, y) is approximated (in a sense which will be made precise
below) by a Gaussian bivariate density,

ψx,y = ψ
(
u, v, µ1(x, y), µ2(x, y), σ1(x, y), σ2(x, y), ρ(x, y)

)
= 1

2πσ1(x, y)σ2(x, y)
√

1 − ρ(x, y)2
exp

− 1
2
(
1 − ρ(x, y)2

)
×
[(
u− µ1(x, y)
σ1(x, y)

)2

+
(
v − µ2(x, y)
σ2(x, y)

)2

− 2ρ(x, y)
(
u− µ1(x, y)
σ1(x, y)

)(
v − µ2(x, y)
σ2(x, y)

)], (3)

where the parameters depend on (x, y), and in such a way that ψx,y is close to f in a
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neighbourhood A of (x, y), but not necessarily elsewhere. As we move to another point
(x′, y′) of f , another Gaussian ψx′,y′ is required to approximate f in a neighbourhood A′ of
(x′, y′). The correlation ρ(x, y) completely characterises the dependence structure of ψx,y,
and since ψx,y is close to f in A, it approximates the complete dependence structure of f in
A (but again not necessarily elsewhere). In this way the dependence in f is described (given
the appropriateness of the local fitting) by the family of Gaussian distributions {ψx,y} and
the associated correlations {ρ(x, y)}.

As noted in Tjøstheim and Hufthammer (2013) the representation in (3) is not well-
defined unless it is the result of a minimization of a penalty function that measures the
distance between ψx,y and f in a neighbourhood of (x, y). Such a neighbourhood can be
introduced by a kernel function K and two bandwidths b1, b2 and a local penalty function

q =
∫
Kb1(u− x)Kb2(v − y)

[
ψx,y(u, v, θ(x, y)) − logψx,y(u, v, θ(x, y))f(u, v)

]
dudv, (4)

where Kb1(u − x) = b−1
1 K(b−1

1 (u − x)) and similarly for Kb2 . Moreover, θ(x, y) =
[µ1(x, y), µ2(x, y), σ1(x, y), σ2(x, y), ρ(x, y)]. The penalty function q is measuring a sort of
Kullback-Leibler distance between ψ(·, θ(x, y)) and f(·), and the population parameter
θ = θb(x, y) depending on b is defined as the minimizer of q. A population parameter
θ = θ(x, y) can subsequently be defined by letting b → 0, this giving a mathematical in-
terpretation to the representation in (3). For more details we refer to Tjøstheim and Huft-
hammer (2013) and Hjort and Jones (1996) who have considered the minimization of q in
another context.

To find an estimate of θ (or θb), we require a method for fitting a Gaussian ψx,y to f in
a neighbourhood of (x, y) given observed data, and one such method is local likelihood, as
described in Hjort and Jones (1996), and which was applied to local Gaussian approximations
in Tjøstheim and Hufthammer (2013). To keep this paper reasonably self contained, we give
a brief outline of this method in the next section, and refer to the cited publications for
further details. The chief objective in the present paper is to demonstrate the usefulness
of the local correlation through a series of empirical examples using financial returns from
major markets.

Before embarking on the technicalities of Section 3, note the following advantages of
applying the local Gaussian correlation model as a description of asymmetries in financial

6

SNF Working Paper No 12/13



data.

1. The dependence measure is based on a family of Gaussian distributions, and describes
the dependence relation for ψx,y and hence for f at the point (x, y), since ψx,y ap-
proximates f at that point. Moreover, properties that are true for global Gaussian
dependence can be transferred locally in a neighbourhood of (x, y).

2. Using local Gaussian likelihood theory (summarised in Section 3) we can construct
asymptotic confidence intervals for ρ(x, y), allowing us to judge whether an observed
asymmetry for financial returns measured by ρ̂(x, y) is statistically significant.

3. Unlike the conditional correlation and similar local dependence measures, in the case
that f itself is Gaussian, ρ(x, y) ≡ ρ everywhere, where ρ is the ordinary correlation
of f . This follows from the definition of ρ (and ρb) via the minimization of q and
it is demonstrated for one realisation of 3500 bivariate Gaussian observations with
standard normal marginals and global correlation ρ = 0.5 in Figure 1. Here ρ has been
estimated by the local likelihood procedure of Section 3. Thus ρ does not suffer from
the bias problem of the conditional correlation described in the introduction. There
is some boundary bias close to the edges of the data set, though. This bias is similar
to boundary bias in ordinary kernel estimation, see e.g. Jones (1993), and its size and
direction can be explained in an analogous fashion.

4. As will be seen in Section 4, the local Gaussian correlation ρ(x, y) is capable of de-
tecting and quantifying asymmetries in financial returns such as bull and bear effects.
Moreover, a quantitative interpretation can be given in terms of the strength of the cor-
relation of the approximating local Gaussian distribution. Also, ρ(x, y) can be applied
to obtain generalisations of classical portfolio theory, and to study contagion effects of
financial markets, see Støve et al. (2012).

5. It is possible to generalise the local Gaussian approach to a set of d variables, financial
returns (X1, . . . , Xd), having a joint density function f . The localised correlation ρ(x, y)
is then replaced by a local covariance matrix Σ = [σij(xi, xj)] for i, j = 1, . . . , d. Note
that to avoid the curse of dimensionality in the estimation procedure, for each pair of
variables (xi, xj) the local covariance at the point (X1 = x1, . . . , Xd = xd) have been
restricted to depend only on (xi, xj). This is analogous to the simplification obtained
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Figure 1: Local Gaussian correlation map for a bivariate Gaussian distribution with correl-
ation ρ = 0.5, based on 3500 observations.

by using additive models for regression problems of high dimensions (cf. Hastie and
Tibshirani 1990). See also Mammen et al. (2009) and Teräsvirta et al. (2010). Further
properties of local covariance matrix modelling are currently being investigated.

3 A brief summary of local likelihood theory

Given the observations {(X1, Y1), . . . , (XT , YT )}, the ordinary (standardised) log likelihood
for a density f is given by

L? = 1
T

T∑
t=1

log f(Xt, Yt).

With ρ as in Equation (2), the maximum likelihood estimate is

ρ̂ =
∑(Xt −X)(Yt − Y )(∑(Xt −X)2∑(Yt − Y )2

)1/2 .
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As in the preceding section we introduce kernel functions Kb1(Xi − x) and Kb2(Yi − y) to
describe a neighbourhood A around (x, y). One might think that the appropriate local
likelihood associated with (3) would be given by

L′ = 1
T

T∑
t=1

Kb1(Xt − x)Kb2(Yt − y) logψx,y(Xt, Yt),

using the kernel function to localise the log likelihood, but it turns out (cf. Hjort and Jones
(1996)) that an adjustment is needed, resulting in the local log likelihood

L = 1
T

T∑
t=1

Kb1(Xt − x)Kb2(Yt − y) logψx,y(Xt, Yt)

−
∫
Kb1(u− x)Kb2(v − y)ψx,y(u, v) du dv.

It is seen that by letting T → ∞ and using the law of large numbers or the ergodic theorem,
in case (Xt, Yt) is ergodic, then −L will converge towards the penalty function q defined in
Equation (4).

Again, letting θ(x, y) be the 5-dimensional parameter vector of ψx,y, and letting wj(u, v, θ)
denote the derivative ∂ logψx,y(u, v, θ)/∂θj, it is easily seen that

∂L

∂θj

= 1
T

T∑
t=1

Kb1(Xt − x)Kb2(Yt − y)wj(Xt, Yt, θ) (5)

−
∫
Kb1(u− x)Kb2(v − y)wj(u, v, θ)ψx,y(u, v, θ) du dv. (6)

Letting T → ∞ and again using the law of large numbers (or the ergodic theorem) on the
term on the right hand side of Equation (5) the expression for ∂L/∂θj converges towards

∫
Kb1(u− x)Kb2(v − y)wj(u, v, θ)[f(u, v) − ψx,y(u, v, θ)] du dv.

For small bandwidths, under appropriate smoothness conditions, and requiring ∂L/∂θj = 0
for all j, we have

wj

(
x, y, θ(x, y)

)
[f(x, y) − ψx,y

(
x, y, θ(x, y)

)
] +O(bTb) = 0,
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and the local likelihood estimates, satisfying ∂L/∂θj = 0, constrains ψ
(
u, v, θ(x, y)

)
to be

close to f(x, y) when (u, v) is close to (x, y). This is the sense in which the family ψx,y

approximates f as the neighbourhood defined by the bandwidth b = [b1, b2] shrinks, which
is also obtained by differentiating the penalty q of Equation (4).

In practice we obtain the estimates θ̂b,T (x, y) by requiring Equation (6) to be zero, and
solving the resulting 5-dimensional set of equations numerically. Note that we then obtain not
only a local correlation estimate ρ̂b(x, y), but also local mean estimates µ̂1,b(x, y), µ̂2,b(x, y),
and local variances σ̂2

1,b(x, y) and σ̂2
2,b(x, y), where the latter can be used to obtain local

covariance estimates.
Letting b be fixed and T tend to infinity, θ̂b(x, y) converges in distribution to θb(x, y),

satisfying ∂q
∂θ

= 0, with q as in Equation (4), that is θb is defined by

∫
Kb1(u − x)Kb2(v − y)wj

(
u, v, θb(x, y)

)
× [f(u, v) − ψ

(
u, v, θb(x, y)

)
] du dv = 0.

In practice we can check the quality of the Gaussian approximation by comparing
ψ(x, y, θ̂b(x, y)) to f̃(x, y), the kernel estimate of f . (In fact in Hjort and Jones (1996)
the main point of the local likelihood analysis is to derive alternatives to the kernel estimate
of f .) Arguments in Hjort and Jones (1996), Tjøstheim and Hufthammer (2013) demonstrate
that θ̂b(x, y) is asymptotically normal such that

(Tb1b2)1/2[θ̂T,b(x, y) − θb(x, y)] d→ N (0, J−1
b Mb(J−1

b )T),

where

Jb =
∫
Kb1(u− x)Kb2(v − y)w

(
u, v, θh(x, y)

)
× wT

(
u, v, θb(x, y)

)
ψ
(
u, v, θb(x, y)

)
du dv

−
∫
Kb1(u− x)Kb2(v − y)∇w

(
u, v, θb(x, y)

)
×
[
f(u, v) − ψ

(
u, v, θb(x, y)

)]
du dv (7)
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and

Mb = b1b2

∫
K2

b1(u− x)K2
b2(v − y)w

(
u, v, θb(x, y)

)
× wT

(
u, v, θb(x, y)

)
f(u, v) du dv

− b1b2

∫
K2

b1(u− x)K2
b2(v − y)w

(
u, v, θb(x, y)

)
f(u, v) du dv

×
∫
K2

b1(u− x)K2
b2(v − y)wT

(
u, v, θb(x, y)

)
f(u, v) du dv. (8)

These expressions are somewhat deceptive, since J−1
b MbJ

−1
b is of order (b1b2)−2, so that

Var[θ̂T,b(x, y)] is of order (Tb3
1b

3
2)−1, a considerably slower convergence rate than the tradi-

tional nonparametric rate of (Tb1b2)−1, when b1, b2 → 0. This limiting process is needed
when the asymptotic distribution of θ̂T,b is considered as T → ∞ and b1, b2 → 0. We refer
to Tjøstheim and Hufthammer (2013) for more details.

The leading term in the covariance expression J−1
b MbJ

−1
b is quite problematic to evaluate,

and in practice we have used two alternative methods. The obvious alternative is to use the
bootstrap, but then we have to assume iid observations. The other alternative is to estimate
(7) and (8) directly using a mixture of numerical integration and empirical averages, with
estimates of the parameters inserted. The latter method has the advantage that it can be
extended to the case of stationary observations. The block bootstrap would be another
alternative for handling the stationary non-iid case. Simulations in Berentsen et al. (2012),
Berentsen and Tjøstheim (2012) and Tjøstheim and Hufthammer (2013) demonstrate that
for a reasonable smooth f good results can be obtained for T in the range going down to
250-500 observations.

4 Empirical analysis of dependence of financial
returns

In this section we apply the local Gaussian correlation to describe daily and monthly returns
from financial markets. Confidence intervals are computed using the bootstrap and this
assumes that the return pairs are independent and identically distributed with an absolute
continuous multivariate distribution. Empirical facts suggest that the variance of the returns
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may be dependent in time (see, for instance, the references listed in Bollerslev et al. 1992),
and we therefore filter some of the return series by estimating GARCH(1,1) models, and
then analyse the standardised residuals. But as will be demonstrated, for some of the data
in this section, the filtering has only a moderate impact on the main results.

4.1 Daily data

We use daily international equity price index data for the United States (i.e. S&P 500),
the United Kingdom (i.e. FTSE 100), France (i.e. CAC 40) and Germany (i.e. DAX 30)
in local currency. The data are obtained from Datastream, and the returns are defined as
100 times the change in the natural logarithm of each market’s price index, ie. as rt =
100 ×

(
log(pt) − log(pt−1)

)
, where pt is the index from Datastream.

These markets have earlier been studied by Longin and Solnik (2001) (only monthly
data), Campbell et al. (2002) and Campbell et al. (2008), but we now use the observation
span from July 7th 1987 to July 28th 2011, a total of 6275 daily observations. As a first step
we treat these return data as coming from the same bivariate density f , i.e. stationarity.
Stationarity, of course, depend on the nature of the time scale and the length of the time
period involved. We will show towards the end of this subsection, that when the time preiod
is divided into 5 periods, significant differences in the shape of ρ(x, y) will arise.

The price indices, where we normalise the indices to 100 on 7th July 1987, and the daily
returns are shown in Figure 2 and 3, respectively. Summary statistics for the returns are
shown in Table 1.

Statistic S&P 500 FTSE 100 CAC 40 DAX 30

Mean 0.02 0.01 0.01 0.03
Variance 1.41 1.29 1.92 2.09
Skewness −1.36 −0.52 −0.14 −0.33
Kurtosis 33.19 13.55 8.91 9.87
Maximum 10.96 9.38 10.59 10.80
Minimum −22.83 −13.03 −10.14 −13.71

Table 1: Summary index statistics for daily data from July 1987 to July 2011.

The daily returns range from −22.8% to almost 11%. All series have a small negative
skewness, and the kurtosis is generally high, between 8 and 33 (we use the kurtosis definition
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Figure 2: Market indices July 1987 to July 2011 for France, Germany, the United Kingdom
and the United States normalised to 100 at the start date.
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Figure 3: Non-standardised returns for the market indices for France, Germany, the United
Kingdom and the United States (in this order, from top to bottom).
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S&P 500 FTSE 100 CAC 40 DAX 30

S&P 500 1.00
FTSE 100 0.48 1.00
CAC 40 0.47 0.78 1.00
DAX 30 0.48 0.70 0.79 1.00

Table 2: Correlation of index returns for daily data from July 1987 to July 2011.

where a normal distribution has kurtosis 0). The high kurtosis values indicate a departure
from the Gaussian distribution, and in these cases the global correlation may not be a good
measure of dependence ((see Campbell et al. 2008)). Table 2 shows the correlation estimates
for the returns. The correlations between the European indices are between 0.7 and 0.8,
while the correlations between the European indices and S&P 500 are much lower, around
0.5. These estimates are in agreement with results from the previously mentioned studies.

We next turn to estimates of the local Gaussian correlation. As mentioned in Section 2,
the estimator of local correlation depends on two smoothing parameters (bandwidths). They
are for now choosen by a simple method (i.e. the standard deviation times a constant), and
using a visual check to ensure that the bandwidths should be chosen such that ψ(x, y, θ̂b(x, y))
does not deviate too much from the ordinary kernel estimate f̃(x, y) of f(x, y). More formal
methods for choosing the bandwidth have been described in Tjøstheim and Hufthammer
(2013) and Berentsen and Tjøstheim (2012), but our experience with the present data is
that the informal method used here is reliable, and the kind of results presented do not
depend critically on a more advanced choice of bandwidth. In fact, we believe that our main
conclusions do not depend on the choice of bandwidth as long as it is within a reasonable
range. Note that if the bandwidhts are very large, the local correlation estimates can be
shown to converge to the global correlation in all gridpoints.

Figure 4 shows the estimated local Gaussian correlation between the returns from
S&P 500 and FTSE 100. Comparing to Figure 1 and to the error limits of Figure 5, it
is seen that the bivariate return distribution is not Gaussian. In particular, there are large
local correlations for both large negative and large positive returns. The large local cor-
relations for negative returns, imply that diversification opportunities would erode in bear
markets (e.g. a downward price trend), which is when they are needed the most; see e.g.
Butler and Joaquin (2002).
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To construct confidence intervals, we use bootstrap simulations (Efron and Tibshirani
1993), and assume iid observation pairs. The actual asymptotics of the local correlation
estimator is complex; see Tjøstheim and Hufthammer (2013). The approximate 5% lower
and 95% confidence limits from 1000 bootstrap replications are shown in Figure 5, top and
bottom plot, respectively. Since we are mainly interested in data for fixed quantiles of the
two series, and returns data are basically measured on the same scale, for greater clarity we
may restrict ourselves to looking at the local Gaussian correlation ρ(x, y) at values at the
diagonal, i.e. for x = y, and effectively turn the three plots into one, see Figure 6. We note
that the local Gaussian correlation properties in fact seems to be symmetric as far as bear
and bull (e.g. upward price trend) market is concerned.

Figure 4: Local Gaussian correlation map for FTSE 100 against S&P 500 returns.
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Much of the variation in local Gaussian correlation in Figure 4 and in Figure 6 could be
expected to be due to volatility, since we have daily data, see Forbes and Rigobon (2002)
for a corresponding reasoning for the conditional correlation. As our next step we therefore
filter the log returns with univariate GARCH(1,1) models with a skewed Student t error
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Figure 5: Approximate lower (top plot) and upper (bottom plot) 5% confidence limits for
the local Gaussian correlation map of US against UK returns shown in Figure 4, based on
1000 bootstrap replications.
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Figure 6: Diagonal local Gaussian correlation values and approximate 90% pointwise confid-
ence intervals for FTSE 100 against S&P 500 returns, based on 1000 bootstrap replications.
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distribution (Bollerslev 1987), and then compute the standardised residuals. To perform the
actual calculations, we have used the software package fGarch (Wuertz and Chalabi 2008)
in the R environment (R Development Core Team 2008). The model equations are

rt = µ+ at,

at = σtεt,

σ2
t = ω + αa2

t−1 + βσ2
t−1,

where rt is the log returns and where the remaining notation is self explanatory. The
GARCH(1,1) parameters are statistically significant for the return series, and the Ljung-Box
statistics calculated for squared and non-squared residuals indicate that the fitted models
are adequate. We do not report these filtrations, but details are available from the authors
upon request. The standardised residuals are calculated as ât = (rt − µ̂)/σ̂t.

Table 3 shows the full correlation matrix for the standardised returns. Note that the
coefficient is 0.44 between the S&P 500 and FTSE 100, marginally smaller than for the non-
standardised returns. The estimated local Gaussian correlations between the standardised
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returns is shown in Figure 7.

S&P 500 FTSE 100 CAC 40 DAX 30

S&P 500 1.00
FTSE 100 0.44 1.00
CAC 40 0.42 0.72 1.00
DAX 30 0.40 0.63 0.74 1.00

Table 3: Correlation of standardised index returns for daily data from July 1987 to July
2011.

Figure 7: Local Gaussian correlation map for FTSE 100 against S&P 500 standardised
returns.
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The general pattern is the same as for the non-standardised returns, but as expected,
removing volatility reduce the local correlation effects, although, as seen from Figure 8 (upper
left plot) taking confidence intarvals into account, they are still statistically significant.

In the rest of the paper we will mainly look at GARCH filtered returns and diagonal local
correlation plots. The local Gaussian correlation on the diagonals for the pairwise market
returns are given in Figure 8. These plots suggest asymmetric local dependence among the
European markets CAC 40, DAX 30 and FTSE 100, specifically a somewhat higher local
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dependence when market returns are negative (bear market). But, in general, the local
correlations are very high between the European markets. Contrast this to the S&P index,
which has a more symmetric local Gaussian correlation against the European indices, except
for large negative returns, where there are large errors, though. Note, however, that in areas
with relatively few observations, the local correlation estimate has a large uncertainty.

Note also that the latter correlation plots are somewhat difficult to interpret, due to the
difference in opening hours for these markets. In order to control for this effect, we have
estimated the local Gaussian correlation for the the average of two-days rolling returns, and
similar dependence patterns occurs.

A possible reason for the U-shaped local Gaussian correlation curves between the US
market and the European markets is that during time periods with a bear market, even
though the price trend is falling, for some days we actually will see quite large positive daily
returns, e.g. a bear market rally (also known as “sucker’s rally”). This may explain why we
observe the high local correlation also for positive returns, and not just for negative returns.
However, this explanation is rather tentative, since it is not always present when we look at
sub-periods (see Figure 9, which in fact indicates that there may be a strong and increasing
dependence bewteen S&P 500 and FTSE 100 also in a bull market situation), and it is not
present for interelations between the European markets. In the latter situation the absence
of this effect could be due to the generally higher correlations. Moreover, it is seen that the
plots where S&P is involved is almost completely symmetric between −2 and +2, while in
the same interval the local correlation between the European markets is almost linear with
a negative slope. To the right of +2 there are indication of a market rally for all market
relationships.

We would expect the bear market rally effect to vanish when looking at returns over a
longer period, say weekly or monthly, since the weekly or monthly returns in a bear market
would per definition be negative. This is confirmed by the analysis of Section 4.2.

We have also computed the local Gaussian correlations between the standardised returns
from S&P 500 and FTSE 100 on different sub-periods of five year intervals, shown in Figure 9.
These indicate that the local correlations are time-varying, consistent with similar results
for classical global correlation; see, for example, Longin and Solnik (1995). There are also
statistically significant differences in curve shape. In the first time period from 1987 to
1991, the market crash of October 1987 may explain the high local correlations we observe
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Figure 8: Local Gaussian correlation curves with approximate 90% confidence intervals based
on 1000 bootstrap replications, estimated between the US and European equity indices and
between pairwise European equity indices.
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for negative returns. All major world markets declined sharply, many over 20% in just one
month. See e.g. Roll (1988) for an account of these events. A period of relatively calm
US and UK markets then followed, with an overall low local correlation 1992-1996, but
the burst of the dotcom-bubble beginning early 2000 and lasting to 2002, can explain the
increased local correlations observed from 1997 and onwards. See e.g. Phillips et al. (2011)
for some background information of the dotcom-bubble. The years from late 2002 until
mid-2007, was characterized by a booming US and UK market, that may explain the large
local correlations for positive returns in the plot. The last period from 2007-2011 has been
dominated by the Financial crisis, and has caused ever more increased local correlations.
Putting all of these periods together, it will be seen that the symmetry patters of the upper
left plot of Figure 8 could easily emerge. There do exists alternative methods for modelling
time-varying correlations, and one can be found in Engle (2002).

4.2 Monthly data

In this section, we study monthly returns from the US, UK and Germany (DE) in local
currency, from February 1973 to September 2009, in all 440 observations. The data are total
market indices from Datastream, and we calculate the returns as for the daily data, i.e.
as 100 times the change in the natural logarithm of each market’s price index. Descriptive
statistics are given in Table 4. In particular, we see that the maximum and minimum returns
are larger than for the daily returns, and again, the kurtosis for all series is high, indicating
a departure from the Gaussian distribution. The global correlations between the returns are
shown in Table 5, and ranges from 0.59 to 0.66. Note the difference from Tables 2 and 3.
For monthly data there are slightly larger correlations between the US and UK, DE than
between UK and DE.

The estimate of the local Gaussian correlation (on the diagonal) between the returns from
the three markets are shown in Figure 10. Clearly, we have evidence of asymmetric depend-
ence, in particular larger local correlations in bear markets. Further, the local correlations
decrease from the left of the plot to the right, implying that diversification opportunities
would be largest in a bull market – or rather, erode in bear markets, which is when they are
needed the most. The results thus support our intuition from the previous section, that the
U-shaped local correlation patterns disappears when looking at returns over a longer period
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Figure 9: Diagonal local Gaussian correlations (with approximate 90% confidence intervals)
between standardised returns from S&P 500 and FTSE 100, divided into five-year long
intervals from 1987 to 2011.
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Statistic US UK DE

Mean 0.524 0.645 0.401
Standard deviation 4.590 5.687 5.259
Skewness −0.731 0.155 −0.835
Kurtosis 5.625 11.452 5.721
Maximum 15.730 41.672 15.173
Minimum −23.545 −29.938 −24.613

Table 4: Summary index statistics for monthly data from February 1973 to September 2009.

US UK DE

US 1.00
UK 0.66 1.00
DE 0.59 0.55 1.00

Table 5: Correlation of the returns for monthly data from February 1973 to September 2009.

than one day, i.e. since the high local correlations for large positive returns, may occur due
to bear markets rallies. Further, these findings are in line with Okimoto (2008), where the
author find, using monthly return data, that the US–UK market bear dependence can be
modelled by an asymmetric copula with lower tail dependence. Using local correlation to
formally recognize copulas has been treated in Berentsen et al. (2012).

Further, GARCH(1,1) filtrations with skewed t-distributed error terms are performed
on the returns, and standardised residuals calculated. (Tables of these filtrations are not
shown, but all GARCH-parameters are significant and the models are reasonable). The
corresponding diagonal plot is shown in Figure 11. We see the same pattern as before, i.e.
asymmetric dependence. Although these estimates are subject to relatively large estimation
errors due to the limited number of observations, especially for extreme values (see Figure
12 for approximate 90% confidence intervals for the local correlation between the US-UK
standardised returns), we do see that the local correlation estimates decrease in normal and
bull markets, compared to the bear market correlations, as we observed for the unfiltered
log returns.
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Figure 10: Local Gaussian correlation of the monthly returns, from January 1973 to Septem-
ber 2009.
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Figure 11: Local Gaussian correlation of the monthly standardised returns, from January
1973 to September 2009.

0.2

0.4

0.6

0.8

−4 −2 0 2
Standardised returns

Lo
ca

l G
au

ss
ia

n 
C

or
re

la
tio

n

Curves

UK−Germany

US−Germany

US−UK

26

SNF Working Paper No 12/13



Figure 12: Local Gaussian correlation with approximate 90% confidence intervals based on
1000 bootstrap replications, estimated between the US and UK using monthly standardised
returns.
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5 A risk management application

In the previous sections we documented asymmetric dependence between asset returns. In
particular in bear markets, where for monthly returns, we estimated significantly higher
dependence between returns than under normal market conditions. In this section, we will
evaluate the economic significance of ignoring this fact from a risk management perspective,
using Value-at-Risk.

Value-at-risk (VaR) is a widely used risk measure to assess and manage market risk, for
example the risk of a portfolio of assets. The VaR is a bound such that the loss over a chosen
time horizon is less than this bound with probability equal to a chosen significance level.
There exists a vast variety of methods to calculate VaR, see e.g. Jorion (2001).

As a very simple illustrative example we consider a portfolio of two assets, with weight
w1 on the first asset and weight w2 = 1 −w1 on the second asset. Let σ1 and σ2 be the asset
variances, and we assume that for short return horizons, the mean returns are negligible.
Based on these assumptions, the portfolio variance is thus

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2ρσ1σ2. (9)

Assume that the asset returns are bivariate Gaussian distributed, the initial investment is
I0, and the significant level is α, then

VaR(α) = I0σpzα, (10)

where zα is the α-quantile in the standard normal distribution. This is a well-known and
straightforward method for calculating VaR.

We now use the monthly returns data for the US and UK from the previous section.
Consider an investment of 10 million dollars into a portfolio consisting of 50% invested in
the US market and the remaining 50% invested in the UK market. From the returns data
we calculate the empirical portfolio variance using equation (9), and by equation (10), the
VaR(0.01) is calculated to be 1.09 million dollars.

The correlation, ρ, and the asset variances, σ1 and σ2, are key quantities for calculating
the portfolio variance. Since we document asymmetric dependencies between financial re-
turns data, that is, changes in the local correlations, we propose to use the local correlations
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and the local variances to calculate the portfolio variance of the approximating Gaussian.
Thus the portfolio variances will be calculated locally, and for now restricting ourselves to
gridpoints at the diagonal. Let x = (x, x) denote the points at the diagonal, then the local
portfolio variances are,

σ2
p,x = w2

1σ
2
1,x + w2

2σ
2
2,x + 2w1w2ρxσ1,xσ2,x. (11)

These local estimates of the portfolio variances will be used as input to equation (10). We
will thus end up with several VaR estimates along the diagonal, and in principle we could
extend these calculations to all gridpoints. As a simplification, for each x we are then using
the tail properties for the approximating Gaussian ψx,x at x, ignoring the fact that further
out in the tail f is approximated by different Gaussians.

Based on the estimation results of the local parameters from the previous section for
the monthly data, we can calculate the local VaR for the portfolio above. The local VaRs
are shown in Figure 13. The classical VaR is included as a straight line in the figure only
for comparison. We clearly see that the increased correlations, for negative returns, give
an increased local VaR, the largest local VaR is around 1.5 million dollars. Note that to
the far right hand-side of the plot, the local VaR increases, even though the correlation
is lower (cfr. Figure 10). This behaviour comes from the fact that the local variances
increases in this area. We conclude that a risk manager estimating only the classical VaR
will severely underestimate the risk in this portfolio, and the reason for this underestimation
is the increased dependencies for negative returns.

We note that there already do exist methods for calculating VaR that take account for
increased dependencies, e.g. simulation based techniques using copula and regime-switching
models (Okimoto (2008) and the conditional VaR-x (Pownall and Koedijk (1999). A more
thorough study is needed for comparing our procedure with these methods. See also Gouri-
eroux and Jasiak (2010), where the authors actually use ideas and methods quite similar to
those presented above.
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Figure 13: The classical VaR and the local VaR estimated for a portfolio.
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6 Discussion, limitations and possible extensions

In this paper we have applied a new measure of dependence, called the local Gaussian
correlation, to the study the dependence between international stock market returns. A
number of studies have provided evidence that asymmetric dependence in financial returns
do exist; however, the methods used for studying this phenomenon must be assessed with
care, since the correlation computed conditional on some variables being high or low is a
biased estimator of the unconditional correlation, making quantitative statements about the
change in dependence difficult. For bivariate normal data, the local Gaussian correlation
avoids this bias, and for non-normal data it provides us with a way of describing the changes
in dependence and the departure from global normality.

Using the local correlation measure, we do find evidence of asymmetric dependence struc-
tures between international stock markets, in particular, between the US and European
markets for monthly data, where a bear market effect is present. Thus our findings sup-
port earlier studies, and, in addition, we have been able to quantify the asymmetry, using a
measure that has a characterisation in terms of the ordinary correlation of a local Gaussian
approximation. Note that the local Gaussian correlation curves might be quite different for
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different pairs of indices. We also demonstrate that both correlation and local correlation
between the US and UK markets increase in time, but not uniformly in terms of correlation
curves. A very interesting question is of course which economic factors drive such asymmet-
ries. For daily data there are also very significant differences in local Gaussian correlations,
but we find significant asymmetries only among the European markets.

Note that for the analysis of US–European markets, we have the problem of different
opening hours for the markets, and also of different national holidays. These variables
should ideally be taken into consideration when analysing these data, although we have not
done so in this paper. Also note that other models than our simple GARCH(1,1) model
can be fitted to the data before analysing them, and several of the papers cited describe
results from such models. We believe our results to be consistent across various such models
that describe the data well, but clearly this should be more closely investigated. It is also
of interest whether the local dependence patterns continue to hold for other comparable
markets, such as Canada, Italy, China and Japan, and whether they are constant over time,
and if not, how they change over time.

Let us briefly note that our approach also gives a new method of assessing the fit of
models, by comparing the local Gaussian correlation of data with the the local Gaussian
correlation of fitted models. See Berentsen et al. (2012) for such an idea applied to copula
theory.

We note that the choice of bandwidths need to be more closely investigated. One possibil-
ity is also to use varying bandwidths, in particular larger bandwidths in areas with relatively
few observations. We defer these topics to future research.

In the last part of our paper we have studied a risk management application, and we
show that increased local correlation will increase risk measures such as VaR.

One additional assumption we have used is that of independent pairs of variables. In
the present paper we have used a GARCH model to come closer to this assumption, but
the theory of local Gaussian correlation actually holds for stationary ergodic time series
case. Moreover, a parametric model for the local Gaussian correlation can be useful for
extreme events. With the tools derived in this paper and their extensions, we might study
the classical portfolio allocation problem and it will also be possible to study contagion
effects, see Støve et al. (2012). Further, we might study portfolio selection for stocks with
certain characteristics, local dependence in foreign exchange data, and correlation between
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risk factors in credits markets. In principle, every financial or econometric analysis that
depends on a covariance matrix can be subject to a local Gaussian covariance analysis. We
have only considered bivariate problems here, but a multivariate extension is possible under
certain simplifying assumptions, as outlined in Hufthammer and Tjøstheim (2009).
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A number of studies have provided evidence that financial returns exhibit asymmetric 
dependence, such as increased dependence during bear markets, but there seems to 
be no agreement as to how such asymmetries should be measured. We introduce the 
use of a new measure of local dependence to study this asymmetry. The central idea 
of the new approach is to approximate an arbitrary bivariate return distribution by a 
family of Gaussian bivariate distributions. At each point of the return distribution there 
is a Gaussian distribution that gives a good approximation at that point. The correla-
tion of the approximating Gaussian distribution is taken as the local correlation in that 
neighbourhood. The new measure does not suffer from the selection bias of the con-
ditional correlation for Gaussian data, and is able to capture nonlinear dependence. 
Analyzing several financial returns from the US, UK, German and French markets, we 
confirm and are able to explicitly quantify the asymmetry. Finally, we discuss a risk 
management application, and point out a number of possible extensions.
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