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Abstract

While economists have discussed ecosystem-based management and similar concepts, little

attention has been devoted to the art of modeling. Models of ecosystems or foodwebs that

make economic analysis viable should capture as much as possible of system structure and

dynamics while balancing biological and ecological detail against dimensionality and model

complexity. Relevant models need a strong, empirical content, but data availability may

inhibit modeling e�orts. Models are bound to be nonlinear, and model and observational

uncertainty should be observed. We suggest the data assimilation method ensemble Kalman

�ltering to improve modeling of ecosystems or foodwebs. To illustrate the method, we model

the dynamics of the main, pelagic species in the Norwegian Sea. In order to reduce the

parameter dimensionality, the species are modeled to rely on a common carrying capacity.

We also take further methodological steps to deal with a still high number of parameters.

Our best model captures much of the observed dynamics in the �sh stocks, but the estimated

model error is moderate.

Keywords: Ecosystem Management, Pelagic Fisheries, Norwegian Sea, Ensemble

Kalman Filter, Bioeconomics
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1 Introduction

Resource economists should be concerned with building models of marine foodwebs

and ecosystems that readily integrate with frameworks for economic decision analysis.

Ecosystem-based �sheries has been on the agenda for decades, but �sheries management

is still largely based on single-species approaches (May et al., 1979; Edwards et al., 2004;

Link, 2010). The need to incorporate ecological and economic interactions and tradeo�s

is pressing, however (Mangel and Levin, 2005; Sche�er et al., 2005; Tschirhart, 2009,

and references therein). Further, to provide operationally relevant management advice

that is `straightforward, succinct, and on-point' (Link, 2010, p. 54), we need a uni�ed

approach to the decision problem that acknowledges inherent uncertainty and re�ects the

con�icting societal needs for resources and longevity.

When modeling foodwebs or ecosystems such that dynamic decision analysis is

feasible, we are forced to balance biological and ecological detail against dimensionality

and, to some degree, model complexity. The art of modeling thus relies on our ability to

capture as much as possible of the system structure and observed dynamics while limiting

dimensionality to a handful of dynamic variables (Link, 2010; Crépin et al., 2011; Levin

et al., 2012). Not only do we need to choose our variables with great care, we also need

to model their dynamics appropriately. Even though we limit ourselves to just a few

variables, the model should still capture key ecological tradeo�s and is bound to become

nonlinear, possibly non-convex (Dasgupta and Mäler, 2003), and certainly stochastic.

Finally, we need to �t the model to relevant data with methods appropriate for the

nonlinearity, stochasticity, and the inherent model and observational uncertainty.

As pointed out by many, the complexity and nonlinearity inherent in ecosystem-

based �sheries management makes it impossible to provide general analyses and results;

each speci�c case and scenarios require a speci�c and empirically based analysis (Link,

2010; Crépin et al., 2011; Levin et al., 2012). Of general interest, then, is the methods

and conceptual approaches that is found to yield valuable insights in special cases and
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accordingly has potential when applied to new scenarios. Thus, our present e�ort to

model the Norwegian Sea pelagic complex, while aiming at relevancy for bioeconomic

decision analysis, has interest both in the special setting of the Norwegian Sea and in a

methodological and conceptual sense.

Our analysis has two elements of particular methodological interest. The �rst

concerns data. Our model is formulated in terms of aggregated biomasses, and

relevant `observations' are then output from stock assessments. The stock level data

are maintained and published by the International Council for the Exploration of the

Sea (ICES, www.ices.dk), who also publishes annual harvest levels. The stock level

data are based on stock assessments via virtual population analyses, and recent work

shows that the generated data have potential problems with endogeneity (Ekerhovd and

Gordon, 2013). Taking care of the problem yields alternative observations that are more

statistically coherent, but the method require age-structured data and the resulting time

series are shorter than the ICES stock level series (Ekerhovd and Gordon, 2013). When

we model the Norwegian Sea pelagic complex (limiting ourselves to Norwegian spring

spawning herring, Northeast Atlantic mackerel, and Northeast Atlantic blue whiting; see

Skjoldal et al. 2004), length of the available time series becomes a pressing issue. In some

sense, models are only as good as the data used to parameterize them (Mangel and Levin,

2005), and in applying the Ekerhovd-Gordon approach, we face a tradeo� between time

series length and data quality.

The second methodologial element of interest is our application of the ensemble

Kalman �lter (EnKF) to �t the aggregated biomass dynamic model to data on stock and

harvest levels. The EnKF treats nonlinear models more rigourously than alternatives like

the extended Kalman �lter (Evensen, 2003); application to nonlinear models is the main

motivation for using the EnKF. The method has further advantages; it �ts the model

in an adaptive way and thereby allowing relatively simple models to capture complex

dynamics and it provides a measure of model error. The latter is of particular interest in

our context, where the model is intended to serve in further stochastic decision analysis.
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The Norwegian Sea harbours some of the world's largest stocks of herring, mackerel,

and blue whiting, often collectively referred to as the pelagic complex of the Norwegian

Sea (Huse et al., 2012). The related �sheries are of considerable, commercial interest

and hence leads to con�ict of interest among neighboring �shing nations (Bjørndal and

Ekerhovd, 2014). Further, because the Norwegian Sea is very deep, with an average depth

of more than 5,500 feet, there are no (signi�cant) demersal predators like cod present.

Thus, at least from a commercial perspective, there are no species at higher trophic levels

of interest. Similarly, at lower trophic levels, the main species is the zooplankton species

Calanus �nmarchicus, also of limited commercial interest. Calanus is, however, the

main food source for the pelagic complex for large parts of the year (Utne et al., 2012).

In other words, the particular geographical and ecological structure of the Norwegian

Sea gives rise to a rather simple foodweb where the pelagic complex relies, to a large

extent, on a common food base. In an admittedly simpli�ed perspective, we model the

Norwegian Sea pelagic complex as three species at the same trophic level that compete for

food and, in model speak, share a common carrying capacity. Modeling of competition

in ecological models has seen little use in practice (Link, 2010, p. 100), but we �nd

the approach appropriate and useful for the Norwegian Sea pelagic complex. Thus,

establishing models for economic analysis in the Norwegian Sea setting should be of both

scienti�c and industrial interest.

We think there is a need for an explicit focus on modeling of biology and ecology that

provides relevant structures for further, economic analysis (sensu Sandal and Steinshamn,

2010; Poudel et al., 2012). In our experience, biologists and ecologists have limited

inherent interest in providing the necessary models, data, and structures. Furthermore,

the existing understanding of ecological-economic interactions in marine foodwebs is far

from complete (Peck et al., 2014), something that underlines the the need for research

into ecological-economic models. As we commit to such modeling, we gain a broader

focus on the interdisciplinary nature of our work and it provides us with a more uni�ed

perspective on ecosystem-based management. We also think such modeling is necessary
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to support better economic decisions because decision makers need good measures of how

the underlying, interconnected systems responds to di�erent management regimes.

2 Data and Method

Figure 1 displays the aggregated stock level estimates and annual harvest levels for

Norwegian spring spawning herring, Northeast Atlantic mackerel, and Northeast Atlantic

blue whiting that are published by ICES. The time series for herring and mackerel go

back to 1972 (39 observations until 2010), while the blue whiting series go back to 1977

(34 observations). As discussed in great detail by Ekerhovd and Gordon (2013), the ICES

stock level estimates are likely biased because of endogeneity between stock and catch

variables (see Gordon 2013 for a comprehensive review of the endogeneity problem and

related issues in �sheries). Ekerhovd and Gordon (2013) �nd a valid instrument for the

catch variable in a lagged catch variable. We implement the Ekerhovd-Gordon approach

to obtain statistically coherent stock estimates for the stocks of interest. Some details on

the procedure are provided in the appendix; see Ekerhovd and Gordon (2013) for the full

account.

The Ekerhovd-Gordon approach leads to improved stock estimates presented in Figure

2. Since the approach relies on lagged variables and the availability of age-structured

data, improved estimates are only available from 1988 for herring, 1982 for mackerel, and

1981 for blue whiting. When we �t a model to the stock levels in �gure 2, we only use

observations for the years where all stocks are observed (1988-2011). It is technically

feasible to �t a model with missing observations, but the �tted model is hard to interpret

when the missing observations are at the beginning of the time series. Another alternative

is to use the observations in Figure 1, with increased observation error, when Ekerhovd-

Gordon estimates are missing. For the balance of this work, however, we limit ourselves

to the observations in Figure 2 with 10 percent observation uncertainty.

To �t our model of the Norwegian Sea pelagic complex to data, we use the ensemble
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Figure 1: Stock estimates from ICES.

Figure 2: Stock estimates from the Ekerhovd-Gordon approach.
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Kalman �lter (Evensen, 2003, 2009). Kvamsdal and Sandal (2014) applies the ensemble

Kalman �lter to a similar model of species in the Barents Sea and discuss motivations for

using the method and yield a relaively comprehensive discussion of some of the technical

details. In the interest of space, we hereby provide a relatively compact description of

the ensemble Kalman �lter and its application to the Norwegian Sea pelagic complex.

First, we need to describe the state space representation of our model. The state

space representation has two sets of equations, the state equations and the observation

or measurement equations. The state equation describes the time evolution of the state

vector x, and consist of a drift term and a stochastic di�usion term. The drift term is the

key element to model. We formulate the model in continuous time such that the state

equation describes an incremental change dx to the state vector over the incremental

time step dt. The measurement equations relates the state vector to the data d via the

measurement functional M(x) that maps the state vector to the `observation space.' In

our case, we treat the stock levels as directly observed and the measurement functional

is then the identity operator. (When we estimate parameters, they become parts of the

state vector, and the measurement functional and further operators need to be modi�ed

accordingly; see Evensen, 2009 for details.)

The continuous time state space model is written

dx = f(x)dt+ σdB (1)

d = M(x) + v (2)

Equation (1) is the state equation, where f(x)dt is the drift term and σdB is the stochastic

di�usion term. The stochastic, Brownian increments dB are independent, identical, and

normal distributed with mean zero and variance dt. Equation (2) is the measurement

equation, where v is a normal distributed error term with mean zero and covariance R.

The �ltering procedure consist of two steps; the forward integration step and the

update or analysis step. The �rst step integrates the state vector forward in time,
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generally between observation times, according to the state equation. The second step

updates the state vector as a weighted mean of the observation vector and the integrated

(forecasted) state vector. The weights are constructed to minimize the variance of the

state estimate. Often, a smoothing step is also carried out, after each or only the �nal

update step. Ultimately, we want to describe a probability density function in the state

space.

In order to avoid approximations in the integration step, the ensemble Kalman �lter

uses a Markov Chain Monte Carlo approach. An ensemble of state vectors, a cloud of

points in the state space, represents the probability density function. Each individual

vector in the ensemble is integrated according to the state vector. The di�usion term

is simulated. When the state equation (1) is formulated as a Markov Chain, the

integration of individual ensemble members amounts to evaluation of the drift term and

simulation of the di�usion term. The integration step is equivalent to solving the Fokker-

Planck equation for the time evolution of the probability density of the state, which is

inconvenient in practical settings with for example a nonlinear drift term. But the Monte

Carlo integration of an ensemble of states approximates the solution of the Fokker-Planck

equation. The only approximation is the limited number of ensemble members (Evensen,

2009, p. 47).

After the integration step, the state vectors in the ensemble are updated through

a weighting against observations. The weights are determined by the Kalman gain

K. Observations are perturbed to form an ensemble of observations that accounts for

observation uncertainty. By perturbing the observations, the updated ensemble of state

vectors retain the proper covariance structure (Burgers et al., 1998). Perturbations are

drawn from the distribution that describes the observation uncertainty. We denote the

updated ensemble Xa (in the technical literature, the update step is called the analysis,

which explains the superscript a). For a given ensemble member i, the update is written

Xa(i) = Xf (i) +K
(
D(i) −MXf (i)

)
(3)
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where Xf is the forward integrated ensemble, D is the observation ensemble, and M is

the observation operator that here is assumed to be linear. (See Evensen 2009 for a more

general treatment.) The Kalman gain is given by

K = CfM ′(MCfM ′ +R)−1 (4)

where Cf is the covariance of the forecast ensemble Xf . The apostrophe denotes the

transpose. The ensemble has to be of su�cient size such that inverted matrices are

nonsingular (Evensen, 2009).

The ensemble Kalman �lter accommodates parameter estimation, essentially by

adding dimensions to the state space and thus the state vector. Parameters are treated

as unobserved, constant model states, which implies that they have zero drift and

di�usion terms (Hansen and Penland, 2007; Kivman, 2003). The distribution of the

ensemble members in the relevant dimension of the state space represents the conditional

probability density function of the parameter.

The ensemble represents the probability density function of the state vector. At any

given time, the estimate of the state is the mean of the state ensemble, with the ensemble

covariance representing uncertainty in the estimate. The initial ensemble should re�ect

belief about the initial state of the system. An advantage with the approach outlined

above is that state and parameter variables are estimated simultaneously, taking model

error into account (Evensen, 2009, pp. 95-97). The �lter produces estimates conditional

upon observations up until and including a given time. When estimates conditional upon

the full information set is relevant, the estimates should be smoothed with the ensemble

Kalman smoother. The ensemble Kalman smoother can be formulated sequentially in

terms of the �ltered estimates; see Evensen (2003, p. 360) for details.

As an aid to compare goodness of �t of models and between models, we consider

di�erent measures. The technical literature (see Evensen, 2003, and references therein)

often considers root mean squared errors and root mean squared innovations. (The term
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innovation is used for the distance between observed and estimated states and re�ect

the idea that �ltering improves the knowledge about the state.) Errors in the parameter

ensembles decline over time by construction, but should stabilize before the end of the

time series in the ideal case with a long enough time series and an appropriate model.

Innovations does not decline by construction, but are also expected to stabilize in the

ideal case. Weak or nonexistent signs of stabilization of either errors or innovations means

either that the model has not converged (inappropriate initialization or simply too few

observations) or that the model is poor. While useful, errors and innovations have limited

ability to inform about model choice between alternative models.

To compare between models, we consider the Akaike (AIC) and the Bayesian (or

Schwarz) Information Criteria (BIC). Both measures require likelihood evaluations, which

essentially means that we must consider the estimated density of the observations. With

the ensemble Kalman �lter, the estimated density is represented by a discrete cloud

of points in the state-space. While it is possible to make distributional assumptions

and carry out calculations of the criteria, we apply a more rudimentary approach where

distributional assumptions are avoided. First of all, to make distributional assumptions

with an involved covariance structure in a high-dimensional space can be cumbersome.

Second, distributional assumptions lead to heavy calculations as the entire distribution

has to be considered. In our rudimentary approach, which simply consider a local density

relative to the observation, any kind of covariance is accommodated and the calculations

are comparatively simple.

Our approach to evaluate the information criteria considers a given neighborhood

in the state-space around each observation where the density is given by the relative

weight of the neighborhood compared to the remainder of the state-space. Weights are

decided by the distribution of ensemble members within and outside the neighborhood.

The neighborhood, or bandwidth, which is kept constant over the time series, should

be as small as possible without being empty. Models should be compared at the same

bandwidth. Given that the exact distribution of the ensemble members vary for di�erent,
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independent runs of the �lter, criteria calculations from more than one run should be

compared. Each run provide equally representative information criteria scores. When

comparing di�erent models, the basis for comparison grows exponentially with the number

of runs, such that relatively few runs could form solid ground for comparisons. For

example, two models that both are run �ve times provide us with twenty �ve independent

comparisons of information criteria scores. However, comparisons between individual runs

becomes cumbersome when models are run many times. Thus, we consider mean criteria

scores over multiple runs. (The exact ensemble distribution depends on the Markov

Chain Monte Carlo mechanism, which has a strong, random element. In the limit where

the ensemble size goes to in�nity, the random element is cancelled out and the criteria

calculations are unique.) Finally, we refer to the discussion in Kass and Raftery (1995)

for what constitutes signi�cant di�erences in criteria values.

3 Modeling the Norwegian Sea Pelagic Complex

The Northeast Atlantic sustains a number of pelagic �sh stocks, the most important of

which are Norwegian Spring Spawning (NSS) herring, Northeast Atlantic blue whiting

and Northeast Atlantic mackerel (Skjoldal et al. 2004). All these stocks are classi�ed

as straddling in the sense that they not only cross boundaries between the exclusive

economic zones of coastal states, but also traverse the high seas areas between those

boundaries (Bjørndal and Munro 2003).

NSS herring mainly inhabit Norwegian waters throughout the life cycle, but can

migrate into Russian waters during the juvenile phase, and into Faroese, Icelandic and

international waters as adults during the summer feeding period (Holst et al. 2004). The

feeding migration pattern, especially for large herring, has changed several times over the

last 60 years (Holst et al. 2002; Utne et al. 2012), varying with the size of spawning stock

biomass and possibly ocean conditions as well. Mackerel spend most of the year in EU

waters, but a large part of the stock migrates into the eastern part of the Norwegian Sea
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and the North Sea from June to October (Belikov et al. 1998; Iversen 2004). In recent

years Icelandic waters have also been inhabited by mackerel (Nøttestad and Jacobsen

2009) possibly due to changing water temperatures. Blue whiting is mainly found in the

Norwegian Sea throughout the year, but spawns west of the British Isles in February-May

(Bailey 1982). The stock is located in Norwegian, Icelandic, Faroese and EU waters, but

the large scale distribution pattern varies and is related to total stock size and water

temperature (Utne et al. 2012).

In order to make headway with our modeling e�ort, we need to introduce a number of

simpli�cations to the relatively complicated picture that arises from the situation in the

Norwegian Sea. First, we need to decide what are the relevant state variables. As juvenile

individuals the NSS herring spend their time in the coastal waters of northern Norway

or in the Barents Sea, and only appear in the Norwegian Sea along with the mature

part of the stock at the age of 3 - 4 years old. Therefore, and since the overlap and

interactions with the two other stocks mainly takes place in the Norwegian Sea, we could

use the spawning stock biomass as the state variable for herring. However, total biomass

is more likely to capture the stock dynamics. Moreover, the ICES present the total

stock biomass following each cohort as di�erent age classes over time. We can use this

information when we implement the Ekerhovd-Gordon approach to obtain statistically

coherent stock estimates. For mackerel and blue whiting the choice of state variable is not

so clear cut. Both juvenile and adult blue whiting spend time in the Norwegian Sea, while

the mature individuals migrate west of the British Isles to spawn, (some of) the juveniles

remains in the Norwegian Seas. This is for a large part the case with mackerel; a large

part of the stock, both young and adult individuals, spend time in the Norwegian Sea.

Thus, we use the total stock biomasses for mackerel and blue whiting as state variables

in our model.

We denote our state variables x1 (herring), x2 (mackerel), and x3 (blue whiting). The

harvest rates are denoted h1, h2, and h3, while we denote parameters ci. In addition, we

consider parameters mj that modify the functional form (or structural characteristics) of
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the growth functions. Using aggregated biomass growth functions modi�ed to re�ect a

common foodbase, we can write a dynamic model, on di�erential form, as follows:

dx1 =

(
c1x

m1
1

[
1 − x1 + x2 + x3

c4

]
− h1

)
dt+ σ1(x)dB1 (5)

dx2 =

(
c2x

m2
2

[
1 − x1 + x2 + x3

c4

]
− h2

)
dt+ σ2(x)dB2 (6)

dx3 =

(
c3x

m3
3

[
1 − x1 + x2 + x3

c4

]
− h3

)
dt+ σ3(x)dB3 (7)

The growth functions, which in general can be written f(xi) = cix
mi
i

(
1 −

∑
j xj/c4

)
,

derive from the classic logistic growth function, but are modi�ed in the following ways.

The positive term has an additional exponent mi that allow a band of low stock levels

with near zero growth and a right-skewed growth pro�le. Essentially, mi modi�es the

growth function such that growth has a degree of depensation. Pelagic stocks often

display violent dynamics that to some degree can be accounted for with depensated

growth functions. For example, in a model of the Barents Sea foodweb, depensated

growth was found crucial to capture the dynamics in the pelagic species (Kvamsdal and

Sandal, 2014). The negative term, which in the classic logistic measures the biomass

relative to the the carrying capacity, measures the total biomass in the system relative

to a common carrying capacity. The parameter c4 is the common carrying capacity.

In our model, all species carry the same weight in the balance against the common

carrying capacity, which implies that a unit of the capacity supports the same amount

of each specie. If lower trophic levels were included in the model, we would have to

assume that all species had identical biomass conversion factors with respect to the lower

levels in order to maintain our assumption. Equal weighting is clearly a simpli�cation,

but a useful assumption in that it reduces the parameter space considerably. Further,

previous experience with modeling and estimation of biomass conversion factors is mixed

(Kvamsdal and Sandal, 2014).

Equations (5 - 7) serve as state equations (1) in our state space model. The stochastic
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Table 1: Initial ensemble parameters and standard deviations

Parameter Implied Mean (exp ᾱk) Ensemble Mean (ᾱk) Ensemble St. Dev.
c1 - c3 1/1000 -6.69078 1.0

c4
30000a 10.30895

0.2
20000 9.90349

m1 - m3 1.5 0.4054 0.2

a Thousand tonnes

increments dBi are independent, with mean zero and variance dt. Correlations in the noise

processes are re�ected in the scaling term σi(x). The scaling term is state-dependent in

that σi(x) is the i'th row in Σ · x, where o�-diagonal elements in the upper triangular

matrix Σ re�ect covariation (see Kvamsdal and Sandal, 2014 for further details).

All parameters are log-normal distributed, and are thus always positive. That the

stocks share carrying capacity essentially means that they compete for resources, and

thus signs of the interactions are negative. For example, the herring stock is negatively

a�ected by its own stock size as well as the size of the mackerel and blue whiting stocks.

The initial ensemble (the prior) is drawn from a multivariate normal distribution.

For the three state variables, we use the �rst observations as the mean of the initial

ensemble and 20% of the �rst observation as standard deviation. As parameters enter

the model equations as ck = exp (αk), the parameter variable ensembles are de�ned in

terms of the αk's, which may be called shadow parameters. Means and variances for

the shadow parameter variable ensembles are listed in Table 1. The table also lists

the implied parameter mean exp (ᾱk). Since it is intuitively much easier to relate to

the actual parameters ck rather than the shadow parameters αk, we refer to the actual

parameters in the discussion that follows. Table 1 also lists prior characteristics for the

modi�cation parameters that are necessary in some speci�cations (further details on the

di�erent speci�cations are discussed in the results section below).

For mackerel and blue whiting the single species intrinsic growth rates are estimated

to lie between 0.3 to 0.4 (Ekerhovd 2003; Hannesson 2013), and for herring the rate

is estimated in the range 0.4 to 0.5 (Arnason et al., 2000). However, here the growth
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equations are modi�ed logistic functions, and the intrinsic growth rates must be scaled

accordingly. Hence, the initial means for the growth parameters for herring, mackerel

and blue whiting, c1 - c3, were set to 1/1000.

Utne et al. (2012) calculated the consumption of zooplankton by herring, mackerel

and blue whiting in 1997, which was estimated to be 82 million tonnes. This gives a

consumption/biomass ratio in the range 5.2 - 6.3. The total biomass of the pelagic �sh

stocks was estimated to be between 13 and 16 million tonnes. However, the pelagic �sh

stock is subject to substantial commercial �sheries and the question remains what would

the pelagic �sh biomass be if there was no �sheries? Is the total `carrying capacity'

biomass of the pelagic �sh stocks substantially larger than the biomass we observe in the

current situation? Moreover, all three �sh stocks spend a substantial amount of time in

waters where they do not interact with each other. This indicates that the c4 parameter

could be substantially larger than the observed biomass. We try two di�erent priors for

the c4-parameter; one with mean 20 million tonnes and one with mean 30 million tonnes.

4 Results

The �rst speci�cation (model 1) estimates all parameters in equations (5) - (7), that is,

c1 - c4 and m1 - m3, with the �rst of the two alternative priors for c4 (implied mean 30

000 thousand tonnes). Table 2, column 1, lists parameter estimates with standard errors

in parenthesis. (Note that the table lists estimated values for the shadow parameters

αi. Table A1 in the appendix lists corresponding con�dence intervals for the ci and mi

parameters.) Table 2 also lists information criteria (bandwidth: 500) and the average root

mean squared innovation, which is the root mean squared distance between the smoothed

state estimate (mean of smoothed ensemble) and the observation vector. The average

is taken over the time series. To overcome the inherent randomness in the calculation

of the information criteria, the results in table 2 and all other subsequent results are

means over �fty independent runs of the �lter. Repeated �ltering runs also improves
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Table 2: Parameter estimates and statistics for four di�erent models: Model 1 (column
1), model 1R (column 2), model 2 (column 3), and model 2R (column 4).

Column 1 2 3 4
Model Model 1 Model 1R Model 2 Model 2R
Parameters
c1 -6.9268 -4.9667 -6.9470 -4.6612

(0.95399) (0.22051) (0.95471) (0.25398)
c1 -6.8263 -4.7296 -6.7976 -4.5016

(0.95374) (0.21386) (0.95631) (0.23985)
c1 -6.8199 -4.8335 -6.7751 -4.6067

(0.94459) (0.17825) (0.94420) (0.21194)
c1 10.328 10.340 10.056 10.262

(0.19174) (0.13893) (0.18158) (0.12333)
m1 0.36124 0.34555

(0.16777) (0.16608)
m2 0.40546 0.39639

(0.16926) (0.16962)
m3 0.40526 0.39718

(0.16072) (0.15691)
Statistics
AIC 74.382 115.36 76.763 125.01
BIC 82.019 119.72 84.400 129.38
Avg. RMSI 911.45 1014.2 908.39 1051.1

estimates, and in particular error statistics (Sætrom and Omre, 2013). Each run uses one

thousand ensemble members. The standard errors for c1 to c4, which are similar to the

prior spreads, suggest that model 1 �tted to the data provides little information about

the parameters (there is little convergence in the parameter ensembles; see Kvamsdal and

Sandal, 2014 for further discussion).

Model 2, which uses the second of the two alternative priors for c4 (implied mean

20 000 thousand tonnes), similarly provides little information about the parameters c1

- c4. Results are listed in column 3 of table 2. Model 1 scores decisively better on the

information criteria (a decisive di�erence is two or larger, see Kass and Raftery 1995),

while model 2 has a slightly better average RMSI.

The problem in model 1 and 2 is likely that to estimate seven parameters in a

nonlinear model with only 22 observations is di�cult, in particular with all the uncertainty
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presented by priors and observational noise. A further worry is the e�ect of the

modi�cation parameters mi on the structure of the growth function. Emerick and

Reynolds (2012) present a scheme where the �ltering procedure is run repeatedly on each

data point and that improves estimates in nonlinear models (estimates are equivalent in

linear models). Inspired by Emerick and Reynolds (2012), we decided to run the �lter

twice, but where we in the second run used a reduced form of the model. The reduced

model has only the ci parameters to be estimated. The modi�cation parameters mi are

set to their estimated values in the model 1 (or 2, respectively) and are treated as known

constants in the second run. That is, model 1 and 2 serve as the initial run for the dual

�lter reduced models 1R and 2R. To be clear, we use the results from the initial run

to inform priors for the second run. The attempt to estimate ci in a second run is a

consequence of the little information about these parameters provided in model 1 and 2.

The results from a secondary �ltering with reduced models are presented in table

2. Column 2 holds the results for model 1R that uses model 1 (column 1) as initial

run. The standard errors show that the model provides much more informed estimates

of parameters ci (see table A1 in the appendix for parameter con�dence intervals). The

information criteria, and the average RMSI, however, clearly suggest that model 1 is

better. When we turn to model 2R in column 4, table 2, we observe a similar e�ect

on the standard errors from the second run, and parameter estimates are better than in

model 2. The information criteria and average RMSI is better for model 2, and we note

that the information criteria deteriorates more when we move from model 2 to 2R than

from model 1 to 1R. We also note that parameter estimates in models 1R and 2R are

relatively close, but removed from the priors (that is, model 1 and 2). The c4 estimates,

which prior was what discerned model 1 and 2, are more similar than in model 1 and 2.

Further, the c4 estimates are closer to the model 1 prior. Thus, in our subsequent e�orts

to improve parameter estimates and model �t, we depart from the high c4 prior.

While model 1 and 2 give decent model �t, they provide little in terms of parameter

estimates. Estimates are close the priors, and standard errors are little improved. On
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the other hand, model 1R and 2R yield sharper parameter estimates, but the model �t

declines. In particular, we are not con�dent in our estimates of mi, which are treated

as known constants in models 1R and 2R. Thus, we pursue an alternative approach that

require substantial computations, but let us indirectly identify more appropriate values

for the modi�cation parameters mi.

The idea is simply to lay out a grid in the mi parameters and estimate the reduced

model (with only the ci parameters to estimate) on each node in the grid. Then, we simply

compare information criteria scores and subsequently the average RMSI to decide which

node yields the best values for mi. To reduce the computational requirements somewhat,

we �rst estimate the reduced model on a rather coarse grid, and then establish a �ner

grid covering the most promising nodes in a second round of estimates. The initial coarse

grid has 216 nodes (6 x 6 x 6), with nodes at mi = [1.0, 1.2, 1.4, 1.6, 1.8, 2.0] for i = 1 . . . 3.

As before, we run the �lter �fty times (independent runs with one thousand ensemble

members) to deal with the inherent randomness in the calculation of the information

criteria. Thus, over the initial grid we run the �lter 10 800 times at an average of 65

seconds per run, so the computational burden is signi�cant.

Table 3 lists the top 20 nodes ranked according to BIC score. BIC score is listed

in the �rst column, while the three next columns specify the node values of mi. Next

are estimated values for ci with standard errors in parenthesis. The last column lists the

average RMSI. Parameter estimates vary with node values for mi, as expected. Note that

the estimates for mi from model 1, which are used in model 1R and are [1.43, 1.50, 1.49],

are not spanned by the top twenty nodes in table 3. Neither the model 2 estimates for

mi are spanned by the top nodes. This observation further fuels our suspicion that the

results in table 2 are subpar. In addition, we observe that the BIC score is signi�cantly

improved. The top three nodes are within what Kass and Raftery (1995) describes as

indistinguishable in terms of BIC scores. We also note that while the BIC score increases

gradually between the top seven nodes, there is a large jump to node eight. Thus, based

on the top seven nodes we establish a �ner grid with nodes at 0.05 steps in the following
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intervals: For m1, [1.65, 2.10], for m2, [1.25, 1.95], and for m3, [1.85, 2.10]. The �ne grid

has 900 nodes (15 x 10 x 6); with �fty independent runs on each node, we run the �lter

45 000 times in total.

Table 4 lists the top 20 nodes in the �ne grid, ranked according to BIC score. The

table is organized in the same way as the previous table, with mi grid values, parameter

estimates with standard errors in parenthesis, and the average RMSI. In the �ne grid,

the entire top 20 list is within 2 score units of the best node (24 nodes are within 2 score

units). The average RMSI is also similar for all nodes (it varies with approximately �ve

percent in the top 20 list), but the top node also has the best RMSI score. Nevertheless,

we �nd the BIC score the most important measure as it consider the estimated state

distribution in relation to the observations, while the average RMSI only considers the

ensemble mean. We consider the top node listed in table 4, with m = [1.85, 1.60, 1.90],

as our best model, and observe that it lies close to the top node in table 3. Table A2 in

the appendix lists parameter con�dence intervals for the top �ve nodes.

Figure 3 shows error bars for parameter estimates from all �fty runs on the top node

(table 4), and there are no signs of �lter divergence (ensemble collapse, see Evensen,

2009; signs of trouble would be runs with signi�cantly di�erent estimates). The �gure

also shows that not only does the precision in the BIC score increase with repeated �lter

runs; in nonlinear models like ours, di�erent realizations of noise in the Monte Carlo

step lead to di�erent parameter estimates that are all equally representative, and the

estimates improve with repeated runs. In particular, the standard errors are improved

(Sætrom and Omre, 2013). Figure 4 shows how the best model �ts the observations in

the state space. The shaded areas illustrate how the estimated density varies; errorbars

illustrate observational uncertainty.

Finally, (8) reports the top node estimate (mean over all runs) of Σ, which forms

the basis for the stochastic terms in equations (5 - 7); standard errors in parenthesis.

We note that while diagonal terms are relatively small but statistically signi�cant, o�-

diagonal terms are small and insigni�cant. Thus, covariate noise can safely be disregarded
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Table 3: Top 20 nodes in the coarse grid (216 nodes) ranked according to BIC score.
BIC m1 m2 m3 c1 c2 c3 c4 Avg. RMSI

71.1991 1.8 1.6 2.0 -8.1854 -5.4753 -6.9873 10.444 843.1165
(0.39391) (0.33863) (0.68812) (0.13964)

72.213 2.0 1.6 2.0 -6.1274 -5.1649 -5.5738 10.3725 906.5269
(0.47188) (0.35559) (0.4895) (0.16078)

72.7344 2.0 1.8 2.0 -5.9885 -6.838 -5.4636 10.2631 907.0614
(0.47198) (0.46026) (0.46571) (0.15698)

73.3707 1.8 1.4 2.0 -8.2926 -3.878 -7.7961 10.4316 849.5203
(0.36199) (0.32969) (0.72655) (0.14255)

73.3949 1.8 1.8 2.0 -7.9986 -7.1184 -6.2474 10.3577 855.8724
(0.39933) (0.42196) (0.66272) (0.13564)

73.563 2.0 1.4 2.0 -6.2335 -3.5737 -5.7232 10.4612 910.0952
(0.4821) (0.39401) (0.54225) (0.15913)

74.5773 2.0 2.0 2.0 -5.9617 -6.5885 -6.4267 9.9664 901.1179
(0.64171) (0.88664) (0.73301) (0.13361)

80.9702 1.8 2.0 2.0 -7.3986 -6.5283 -6.6833 10.1298 892.974
(0.5169) (0.87446) (0.73648) (0.13292)

82.0295 2.0 1.6 1.8 -6.3566 -5.4135 -7.5506 10.4988 929.6722
(0.39116) (0.29244) (0.34258) (0.14104)

82.2414 1.6 1.8 2.0 -6.4212 -7.2534 -6.3797 10.4466 891.4135
(0.33517) (0.42168) (0.64838) (0.14239)

82.4937 1.6 1.6 2.0 -6.6038 -5.6184 -7.4114 10.5163 890.1095
(0.30315) (0.30839) (0.6842) (0.14498)

83.9905 2.0 1.8 1.8 -6.1957 -7.2481 -7.3492 10.3902 935.1757
(0.38436) (0.41716) (0.34758) (0.13639)

84.0845 1.6 1.4 2.0 -6.6951 -4.0529 -8.227 10.5293 896.0693
(0.28734) (0.29232) (0.73805) (0.15004)

84.2738 1.8 1.2 2.0 -8.1889 -3.2432 -7.0609 10.4235 885.498
(0.38967) (0.70791) (0.64652) (0.14833)

84.7132 2.0 1.4 1.8 -6.3585 -3.6121 -7.4952 10.4747 936.3013
(0.41187) (0.31606) (0.31763) (0.13871)

85.0385 2.0 2.0 1.8 -5.951 -6.595 -6.324 10.1251 931.3596
(0.47024) (0.82998) (0.44162) (0.11872)

88.5862 2.0 1.2 2.0 -6.1452 -4.1419 -5.9459 10.3565 958.8742
(0.47426) (0.86163) (0.58491) (0.16763)

88.7298 2.0 1.6 1.6 -6.3725 -5.3725 -5.8018 10.4928 951.6819
(0.4097) (0.29015) (0.28258) (0.14027)

89.078 2.0 1.8 1.6 -6.2827 -7.1031 -5.6938 10.432 951.4994
(0.40752) (0.40493) (0.30319) (0.13748)

89.2972 2.0 1.2 1.8 -6.3272 -3.0063 -7.3664 10.4717 952.9953
(0.38141) (0.63812) (0.34166) (0.13927)
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Table 4: Top 20 nodes in the �ne grid (900 nodes) ranked according to BIC score.

BIC m1 m2 m3 c1 c2 c3 c4 Avg. RMSI
65.7026 1.85 1.6 1.9 -8.371 -5.5176 -7.8559 10.3903 803.579

(0.56914) (0.29561) (0.65714) (0.1368)
65.8133 1.85 1.5 1.9 -8.3452 -4.6862 -7.8261 10.405 804.3131

(0.55548) (0.28596) (0.66474) (0.14129)
66.058 1.85 1.45 1.9 -8.3092 -4.261 -7.8539 10.4056 806.2787

(0.57115) (0.29154) (0.64302) (0.1391)
66.1489 1.85 1.55 1.9 -8.2867 -5.0687 -7.8679 10.3764 808.0455

(0.56503) (0.28673) (0.64953) (0.13618)
66.2482 1.85 1.4 1.9 -8.316 -3.8026 -7.8388 10.3836 806.0587

(0.57871) (0.30296) (0.65676) (0.13986)
66.2795 1.85 1.55 1.95 -8.3124 -5.0362 -8.0922 10.3346 812.4237

(0.56052) (0.30557) (0.72116) (0.13431)
66.3121 1.85 1.5 1.95 -8.32 -4.6322 -8.0655 10.3464 812.652

(0.56256) (0.3082) (0.72791) (0.13797)
66.4704 1.85 1.65 1.9 -8.3477 -5.9053 -7.8764 10.3759 807.1582

(0.5565) (0.29184) (0.65896) (0.13593)
66.4986 1.85 1.45 1.95 -8.3729 -4.2258 -8.1455 10.3586 811.7163

(0.53915) (0.30604) (0.73033) (0.13987)
66.7375 1.85 1.6 1.95 -8.3091 -5.4547 -8.1428 10.3465 816.6333

(0.56243) (0.30831) (0.71099) (0.13391)
66.9549 1.85 1.35 1.9 -8.3164 -3.3553 -7.8344 10.3751 806.155

(0.54984) (0.31153) (0.6634) (0.14072)
66.9556 1.85 1.7 1.9 -8.3395 -6.349 -7.9064 10.3756 809.9115

(0.56397) (0.28561) (0.64611) (0.13621)
67.0736 1.85 1.65 1.95 -8.349 -5.8675 -8.1004 10.3283 817.3368

(0.54151) (0.31167) (0.72215) (0.13452)
67.0776 1.85 1.4 1.95 -8.3354 -3.7812 -8.0591 10.3582 814.9704

(0.55177) (0.32239) (0.73644) (0.14112)
67.0936 1.85 1.75 1.9 -8.3742 -6.7769 -7.9096 10.36 809.0864

(0.5537) (0.2915) (0.62797) (0.13393)
67.1933 1.85 1.25 1.9 -8.0358 -2.3108 -7.7563 10.3025 806.7234

(0.5584) (0.37313) (0.65145) (0.13753)
67.2725 1.85 1.3 1.9 -8.2055 -2.8524 -7.8245 10.3568 807.3225

(0.56775) (0.33059) (0.65049) (0.14225)
67.3221 1.85 1.5 2.0 -8.2421 -4.5593 -7.385 10.3897 829.4626

(0.57289) (0.36337) (0.73364) (0.14074)
67.3487 1.85 1.3 1.95 -8.1735 -2.8 -8.0965 10.3243 815.1889

(0.54423) (0.35603) (0.73799) (0.14116)
67.3515 1.85 1.55 2.0 -8.2314 -4.9624 -7.46 10.3732 828.0434

(0.54935) (0.35824) (0.72163) (0.13784)
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Figure 3: Parameter estimates for all runs on top node in �ne grid. See table 4 for
statistics.
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Figure 4: State estimates (white curves) for the top node in �ne grid, mean over all runs.
Shaded areas show the estimated state space density. Errorbars show observations with
observation uncertainty. See table 4 for statistics.
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in the model.

Σ =



0.0763 0.00113 0.000898

(0.00666) (0.00240) (0.00356)

0 0.0641 0.00183

(0.00722) (0.00298)

0 0 0.0838

(0.00592)


(8)

5 Final Remarks

In 2006-2009, there was a strong buildup of biomass of planktivorous (mostly pelagic)

species in the Norwegian Sea. Biologists have observed negative relationships between

length at age and stock biomass, a pronounced reduction in zooplankton abundance, and

extension of the spatial distribution of populations, and suggest that planktivorous �sh

biomass has been above the carrying capacity (Huse et al., 2012). The populations

showed signs of density-dependent length growth, and for herring and blue whiting

there was also signi�cant e�ects of interspeci�c competition. The results in Huse et al.

(2012) support the hypothesis that interactions among Norwegian Sea planktivorous

�sh populations negatively a�ect growth mediated through depletion of their common

zooplankton resource.

The migratory patterns of these stocks have undoubtedly made it more di�cult to

attain and to uphold international agreements on catch quotas. While agreements on less

migratory demersal stocks (cod and haddock, for example) between Russia and Norway

have remained unchanged since the early 1980s, the agreements on the pelagic stocks have

sometimes broken down or taken a long time to establish (Bjørndal and Ekerhovd 2014).

Although the literature on straddling �sh stocks is extensive, with several contributions

in recent years, no study addresses these issues in a multispecies context (Bailey et al.

2010; Hannesson 2011; Bjørndal and Munro 2012). The present work will be a step
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toward closing this gap by developing a useful framework for game theoretic analysis of

such systems.

We present a model of the Norwegian Sea pelagic complex that incorporates species

interspeci�c competition and a common carrying capacity while maintaining a low

dimensionality. The model is nonlinear, non-convex, and stochastic. The model captures

much of the observed dynamics in the modelled populations, also in forecasting (an

earlier study of the model that calculated two-year-ahead forecasts found that the main,

dynamic features were picked up, but that forecasts tended to be low; see Ekerhovd and

Kvamsdal, 2013). The low dimensionality is a key feature in that it makes economic

analysis (that is,dynamic decision analysis; see Sandal and Steinshamn, 2010; Poudel

et al., 2012) feasible, see Kvamsdal and Sandal (2014) for further discussion. Our e�orts

to model and estimate the Norwegian Sea pelagic complex combines a biological and

ecological familiarity and understanding, the use of recent advances in data improvement

(Ekerhovd and Gordon, 2013), and application of data assimilation methods (Evensen,

2003) that have seen little use in our �eld.

The procedure in Ekerhovd and Gordon (2013) obtains statistically coherent stock

estimates and points out problems that seem previously overlooked. In light of the debate

about the use and importance of �shieries data (Pauly et al., 2013), the Ekerhovd-Gordon

approach points forward to better models and better informed decisions. Again, good

models require good data (Mangel and Levin, 2005). We also think data assimilation

methods like the ensemble Kalman �lter points to better models that serve towards

economic decision analysis. Ultimately and in the broader scope of things, we need to

develop methods and frameworks that are appropriate for the dimensionality, nonlinearity

and stochasticity inherent in ecosystem-based �sheries managemet, all in a holistic view

(Hill et al., 2007; Link, 2010; Fulton et al., 2011). In this perspective, our work may be

a small step, but nevertheless a step in the right direction.
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A Appendix

The data generated using Virtual Population Analysis (VPA) is interesting in that it

is rich in its coverage of catch, mortality, and stock size information, but mortality and

stock size are generated variables based on biological assumptions, actual catch levels, and

assumed decay functions. Moreover, the generated regressors are endogenous and a least

squares estimator produces inconsistent and ine�cient estimates. To address this issue

we use a predicted instrumental variable for stock size (Ekerhovd and Gordon, 2013).

Ekerhovd and Gordon (2013) identi�ed a valid exogenous instrument in the past

cohort catch Ct−1
a−1,i that is structurally correlated with current stock, impacts current

catch only through its in�uence on current stock and subject to independent shocks.

Following Ekerhovd and Gordon, for each stock estimate we instrument out Ct
a,i using

Ct−1
a−1,i. However, if the endogeneity problem is viewed as measurement error, an additional

instrument is available. The VPA procedure for generating stock is an approximation

and subject to measurement error; thus correlation between stock and the regression

error term. It is common in empirical practice to use the rank order (ROt
a,i) of the

stock variable as an instrument to avoid the correlation problem. The argument is

that the rank order is correlated with stock but not correlated with measurement

error. This is true as long as the measurement error is not strong enough to change

the rank order. Accepting the rank order as an exogenous instrument, we proceed to

estimation using both Ct−1
a−1,i and ROt

a,i in the �rst-stage regression for predicting the

instrumental variable for generated stock. To be complete, the instrumental variable

(IV) for stock is the predicted values from the �rst-stage regression written generally as

St
a,i = δIV1 Ct−1

a−1,i + δIV2 ROt
a,i + δIV3 Ct+1

a+1,i +αa,i +βit+ϑt
a,i, where αa,i is the age-class �xed
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e�ect, t dummy outs time shocks, and ϑt
a,i is a random error term.

Our strategy, following Ekerhovd and Gordon, is to use both lagged cohort catch

and rank order of the stock variable as exogenous variables to build the IV. However,

with both past and forward lags in the IV regression, we lose degrees of freedom and the

youngest age classes.

We apply a within estimator with �xed time e�ects corrected for heteroskedasticity

and autocorrelation within the panels to estimated the IV equation. A test of the strength

of the correlation of the assumed exogenous variables, lagged catch, and rank order on

current stock can be tested with a joint F-test. We test the null that H0 : δIV1 = 0

and δIV2 = 0 with generated F-statistics of 15.56 (0.00), 27.98 (0.00), and 6.55 (0.03)

for herring, mackerel, and blue whiting, respectively (p-values in parentheses). These

tests provide some statistical validation for using the exogenous instruments in the IV

equation.
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Table A1: Parameter con�dence intervals (two standard errors): Model 1 (column 1), model 1R (column 2), model 2 (column 3),
and model 2R (column 4). See table 2 for shadow parameter estimates and statistics.

Column 1 2 3 4
Model Model 1 Model 1R Model 2 Model 2R
Parameters
c1 (0.000380, 0.00256) (0.00560, 0.00870) (0.000377, 0.00254) (0.00736, 0.0122)
c2 (0.000422, 0.00283) (0.00715, 0.0109) (0.000434, 0.00294) (0.00876, 0.0141)
c3 (0.000427, 0.00282) (0.00668, 0.00954) (0.000450, 0.00298) (0.00811, 0.0123)
c4 (25255, 37059) (26962, 35625) (19425, 27934) (25325, 32429)
m1 (1.21, 1.69) (1.19, 1.66)
m2 (1.26, 1.77) (1.25, 1.76)
m3 (1.27, 1.76) (1.27, 1.74)
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Table A2: Parameter con�dence intervals (two standard errors) for top �ve nodes in �ne grid. See table 4 for shadow parameter
estimates and statistics.

Column 1 2 3 4 5
m-values [1.85, 1.60, 1.90] [1.85, 1.50, 1.90] [1.85, 1.45, 1.90] [1.85, 1.55, 1.90] [1.85, 1.40, 1.90]
Parameters
c1 (0.000134,0.000423) (0.000138,0.000423) (0.000141,0.000445) (0.000145,0.000456) (0.000140,0.000449)
c2 (0.00300,0.00542) (0.00695,0.0123) (0.0105,0.0190) (0.00474,0.00843) (0.0166,0.0305)
c3 (0.000205,0.000764) (0.000210,0.000801) (0.000208,0.000759) (0.000204,0.000754) (0.000207,0.000778)
c4 (28423.4431,37383) (28723,38118) (28820,38096) (28070,36880) (28193,37349)
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Up the Ante on Bioeconomic  
Submodels of Marine Foodwebs: 
A Data Assimilation-based Approach

Nils-Arne Ekerhovd 
Sturla F. Kvamsdal

While economists have discussed ecosystem-based management and similar  
concepts, little attention has been devoted to the art modeling. Models of ecosystems 
or foodwebs that make economic analysis viable should capture as much as possible 
of system structure and dynamics while balancing biological and ecological  
detail against dimensionality and model complexity. Relevant models need a strong,  
empirical content, but data availability may inhibit modeling efforts. Models are 
bound to be nonlinear, and model and observational uncertainty should be observed. 
We suggest the data assimilation method ensemble Kalman filtering to improve  
modeling of ecosystems or foodwebs. To illustrate the method, we model the  
dynamics of the main, pelagic species in the Norwegian Sea. In order to reduce the  
parameter dimensionality, the species are modeled to rely on a common carrying 
capacity. We also take further methodological steps to deal with a still high number 
of parameters. Our best model captures much of the observed dynamics in the fish 
stocks, but the estimated model error is moderate.
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