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Abstract

Marine Protected Areas are considered as a hedging tool against some

of the uncertainties that trouble many fisheries today. Such tools are

always connected with a cost; a premium. An optimal harvest rule is

combined with a protected area to manage a fishery. The model ignores

uncertainty, and is thus ideal to analyze the induced cost arising from

protected areas. We address the premium by comparing settings where

only an optimal harvesting policy is implemented and where the combined

management tool is used. The premium is found to be increasing and

convex as a function of the degree of protection. Concepts of relative

growth efficiency, relative biological gain, and biological efficiency are all

introduced to increase the understanding of the management tool and its

effects on the bioeconomic system. Time series solutions show that the

net return per unit of fish increases after the protected area is established.
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1 Introduction

A marine protected area (MPA) is a geographically defined area, covering parts

of a fish stock’s habitat, that is closed to fishing (Hannesson 1998). Marine

reserves or sanctuaries are other common names for this concept. There exists

a vast literature on the biological and economic aspects of MPAs; many authors

consider both.

The literature addressing biological issues comes up with many good reasons

to consider MPAs as a management tool for fish stocks. Reserves can reduce

the variance of a population (Conrad 1999), and of catches (Hannesson 2002),

raise the spawning and exploited biomass level (Gell and Roberts 2003) and

improve density, diversity (Halpern 2003, Sanchirico 2000) and recovery time

for small stock sizes (Grafton, Kompas, and Ha 2005). Further, MPAs can

protect against extinction (Flaaten and Mjølhus 2005) and management failure

(Lauck, Clark, Mangel, and Munro 1998). “[. . . ] nearly any marine habitat can

benefit from the implementation of a reserve.” Halpern (2003, p. 117). When

it comes to the economic aspects, the literature is less conclusive. Hannesson

(1998) demonstrates that reserves cannot yield economic benefits in a determin-

istic model and, compared to pure total allowable catch (TAC) policies, reserves

reduce efficiency (Anderson 2002). However, among others, Grafton, Kompas,

and Ha (2005) demonstrates that marine reserves are able to yield large eco-

nomic payoffs and improve overall harvest levels. Sanchirico (2000) provides

a thorough discussion of potential costs and benefits arising from MPAs, and

asserts that reserves can increase nonconsumptive use values and control fishing

effort. There is a wide consensus in the literature that MPAs need to be com-

bined with other management tools to provide positive results, e.g. Sanchirico

(2000) and Sumaila (2001). We think it is important to study the interplay

between a protected area and other management regimes. In this paper, we

combine an MPA with a TAC policy enforced on the remaining grounds, i.e.

grounds open to fishing.
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Another issue that is broadly discussed in the literature regarding MPAs

is uncertainty. The model in this paper is deterministic, but the paper is all

about uncertainty. Or rather, the subject; marine protected areas, is all about

uncertainty. Several authors claim that reserves are able to reduce different

risks regarding a fishery: e.g. poor stock assessment; collapse (Arnason 2001,

Lauck, Clark, Mangel, and Munro 1998, Sanchirico 2000); uncontrollability;

and economic shortsightedness (Clark 1996). In particular, marine reserves are

proposed to address “persistent, irreducible scientific uncertainty pertaining to

marine ecosystems.” (our emphasis) Lauck, Clark, Mangel, and Munro (1998,

p. 72). Terms like insurance value (Sumaila 2001) and bet hedging (Lauck

1996, Sanchirico 2000) are frequently in use in relation to MPAs. “Bet hedging

is usually thought to involve a cost, or ‘premium,’ in terms of a decrease in

expected benefits, which is accepted in order to achieve a reduction in risk.”

Lauck, Clark, Mangel, and Munro (1998, pp. 74-75). This paper addresses that

induced cost; we calculate it, and we calculate it with no respect to uncertainty.

That is, our model is explicitly devoid of uncertainty. However, as already

mentioned, MPAs as a management tool deal with uncertainty. Still, we do, to

some extent, investigate results for a range of parameters and thus take into

account some uncertainty regarding these and the robustness of the results.

Many authors try to assess the intrinsic value or economic performance of

MPAs, e.g. Grafton, Kompas, and Ha (2005), Hannesson (1998), Holland and

Brazee (1996), and Sumaila (2001), and many consider uncertainty. A problem

is that benefits, and in particular, costs are not properly addressed.1 In this

paper, we calculate the cost that arises from the establishment of a marine re-

serve. Please note that we adopt an industry perspective on this matter. Thus,

benefits like nonconsumptive use value, biological diversity and similar consid-

erations are not accounted for. Many such benefits are difficult to measure, and

we do not include them in our analysis. They should, however, be considered

to the costs we calculate in our analysis if MPAs are to be advisable from an
1Often, the net result is considered, with little or no attention to the mechanism that

generates the different effects and the relative importance of these.
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economic point of view. We address this by formulating a simple bioeconomic

model for a fishery, and implement the establishment of an MPA. The fishery is

regulated by a TAC feedback policy, that is, we maximize returns with respect

to the dynamics of the fish stock and the interplay between the protected and

the unprotected stock. The resulting policy depends solely on the stock.2 We

calculate the induced cost by comparing returns from the fishery with and with-

out the MPA. It is important to investigate these issues, because, in most cases,

it is different agents, or sectors, in the economy that receive the benefits or have

to take on the costs.3 In order to implement MPAs in a proper way, one should

have a clear notion of what the potential gains and costs are and, in particular,

what the certain costs are. We find the use of certain appropriate here, when

maximizing returns we use the best case scenario. As already established, in a

deterministic model only reductions in returns will arise. To be able to promote

MPAs, one must document benefits to cover at least the costs documented in

this paper. In that sense, our model is a benchmark model.

As the trends in the literature indicate, it is diffcult to generalize on the

subject of marine reserves (Alder, Sumailia, Zeller, and Pitcher 2001). On the

other hand, Lauck, Clark, Mangel, and Munro (1998) argues that generality

is not always useful, given the variety of ecosystems and possible management

regimes.

2 The Model

We will use optimal control theory4 to optimize the value of the fishery, that is

V (X(t; s); s) = max
H

∫ ∞

0

e−δtΠ(X(t; s),H(t; s), t)dt (1)

2Refer to Sandal and Steinshamn (1997) for an example on the usefulness of feedback
policies.

3The costs calculated here accrue to the fishing industry, as mentioned. Many of the
benefits that MPAs are held to generate, will typically accrue to the society as a whole. We
will see later, however, that MPAs can increase the gap between the unit harvesting cost and
the unit price of fish.

4Kamien and Schwartz (1991) gives a good overview and introduction to the field.
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subject to constraints on the control, growth in stock and initial conditions,

H(t; s) ≥ 0,
dX
dt

= F (X(t; s);K)−H(t; s), X(0; s) = X0 (2)

where X(t; s) is the biomass, H(t; s) is the harvest rate, δ is the rate of discount,

t is time, Π is a measure of the profit, F the natural growth in biomass, and

K is the carrying capacity of the environment. X0 is the initial condition of

the biomass. We call the optimal value of the fishery V (X; s), omitting the

arguments of X(t; s). s is defined as the degree of protection and is a number

between 0 and 1; it gives the proportion of the total carrying capacity under

protection.5 As indicated in (1), s is only a parameter in V , X, and H. That

is, s is not treated as a control variable, and the concept of an optimal level of

protection is thus not an issue as it is in many studies; the level of protection is

given exogenously.

Before we move into further technicalities in the model, we will explain the

premium of the MPA management tool. The induced cost of implementing a

marine reserve is simply a result of a reduction in value. Thus, we compare the

value of the fishery, when an MPA is established, to the value of the fishery in

the no reserve case. We can formulate this idea as follows.

P(X; s) =
V0 − V (X; s)

V0
(3)

where P(X; s) is the premium of the MPA tool and V0 = V (X; 0). We will use

the following notational convention unless otherwise noted: superscripts relate

to the time variable and subscripts relate to the protection parameter. The

premium is normalized according to V0. Thus, the premium is given as a share
5When using the model, it is convenient to think of protection in terms of the carrying

capacity, which is what matters for the outcome of the model. In the real world, however, it
is better to refer to the geographical proportion of the habitat under protection, as MPAs are,
indeed, a geographical concept. Under assumptions of uniformity; the factors comprising the
carrying capacity, e.g. food and shelter, are uniformly spread throughout the entire habitat,
these two different interpretations of protection coincide. We want to keep both notions of
MPAs in mind, as they are useful in different ways. Further, assuming uniformity of the
carrying capacity rules out the possibility of a so-called sink-source system (Sanchirico and
Wilen 1998).

4



SNF Working Paper No. 06/07

of the total profits accruing from the fishery with no reserve present. We will

sometimes refer to (3) as P(s) or simply P.

The rest of this section is devoted to details on the model. First we set

up the reference model ; that is, the model with no reserve. Solving this model

yields V0 in equation (3).6 Then we move on to implement the MPA and find

V (X; s).

2.1 Reference Model

The model is an aggregated and deterministic formulation in continuous time.

We find it instructive to explain the model without introducing the marine

protected area first, and then to extend the model to include the MPA case.

The simple structure of the reference model will be apparent, and it will be easier

to isolate the impact of the MPA on the model and on the results. Considering

the simple reference model, the complexity that arises from the idea of MPAs

is astonishing.

The model we represent here is autonomous, which means that involved

functions are independent of time.7 A profit maximizing manager considers

the problem of maximizing the net value of a renewable resource, specified as

follows.

max
H

∫ ∞

0

e−δtΠ(X,H)dt (4)

subject to
dX
dt

= F (X;K)−H

X ≥ 0, H ≥ 0

 (5)

where Π is net profit, F is the natural growth of the stock, X is the size of the

stock, H is the total harvest, δ is the discount rate, K is the carrying capacity
6Putting s = 0 in the MPA model yields the same result, but is more complicated and

time consuming. Furthermore, comparing the models like this (V0 stems from the reference
model, V (t; s) from the MPA model) indicates that they are consistent with each other.

7Time (t) is not an explicit argument of the functions. The discount factor is dependent on
time. The problem is still considered autonomous; it can be transformed into an autonomous
problem by considering current value functions.

5
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and t is time. The net profit function has the form

Π(X,H) = P (H) ·H − C(X,H)

where P (H) is the inverse demand function and C(X,H) is the cost function.

This model is considered in Sandal and Steinshamn (1997) and Sandal and

Steinshamn (2001), who provide and discuss feedback solutions of the problem.

Feedback solutions are a powerful tool to deal with uncertainty; the optimal

control only depends on the stock level. Perturbations in the stock level are

taken into account as soon as they are discovered, no matter how unexpected.

2.2 Marine Protected Area Model

In the following section, we introduce the idea of an MPA and incorporate it into

the model. Let us first examine the biological aspects. As already mentioned,

the parameter s ∈ (0, 1) measures the degree of protection. We find it natural

to think of it as a geographical concept, where s simply gives us the share of

the entire habitat under protection. As we assume uniformity in the carrying

capacity of the environment; the means of which the carrying capacity consists

of, is uniformly spread throughout the entire habitat,8 it follows that s also

measures the share of the carrying capacity under protection. The assumption of

uniformity distinguishes our model from a sink-source model of the population.

The total carrying capacity is given by K, thus the carrying capacity within the

reserve is s ·K and outside it is (1− s) ·K.

The density of fish is simply defined as the ratio between actual biomass and

carrying capacity, (i.e., the density outside the sanctuary is given by
X

(1− s)K
,

where X now, of course, measures the biomass found outside the sanctuary). It

follows that the density is 0 when the stock is extinct, and 1 when the biomass

equals the carrying capacity. For all practical purposes, the density is somewhere
8Uniformity means that the environment is practically identical everywhere in every way

that matters for the stock. This is of course a simplification that yields a situation where
the only difference between the protected and the unprotected area is the harvest rate. The
harvest rate is zero inside and nonnegative outside the protected area.

6
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between 0 and 1.9 We model the migration of fish between the areas according

to Hannesson (1998). The idea behind the migration model is inspired by the

way the natural sciences consider how substances (typically gas) diffuse through

a membrane due to differences in density, based on random movements and the

theory of probability. The net diffusion always smoothes densities and points

into the low-density area.10 The migration term in our model only depends on

the difference in density. We write

φ

(
Y

sK
− X

(1− s)K

)

where X and Y and (1 − s)K and sK measures the biomass and the carrying

capacity in the unprotected and protected area, respectively. φ is the rate of

migration and decides how quickly the difference in density will be smoothed.11

The limits φ→ 0 and φ→ 1 have the following implications. The first yields a

one dimensional problem (the protected stock is not interesting as there is no

interaction) equivalent to the reference model with a reduced carrying capacity.

The second yields a system with instantaneous redistribution of densities, which

is exactly the reference model, with carrying capacity K. For any positive

and finite rate of migration, we have a two dimensional system; that is, two

stocks interacting through migration. Note that the migration term is positive

whenever the density in the protected area is dominating. A positive term is

associated with net migration from the inside to the outside of the reserve. We

always refer to the protected habitat as one area, but extending the model to

considering several protected areas is fairly simple. Then, Y and sK would

measure the aggregated biomass and carrying capacity for all the protected

areas. Some assumptions regarding the migration rate would take care of the
9The upper limit (1) is not actually a limit; the density could, in theory, be infinite.

However, a density above 1 implies zero or negative natural growth, and will thus never
prevail in an active fishery.

10The same idea is considered by inter alios Conrad (1999), Flaaten and Mjølhus (2005),
and Sumaila (2001).

11Extending the diffusion-through-membrane idea, a zero migration rate implies a mem-
brane like an impenetrable brick wall in the sea. An infinite rate would imply no membrane
at all.

7
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rest. The way we have formulated the model, φ can be understood to depend

on the length of the interface between the protected and unprotected area.

Keeping φ fixed (as we intend to do) then implies that the interface is of the

same length for all s.12 If one thinks this construction is a bit too rigorous

or not general enough, there is another way to think of the model: think of

a fish stock with a patchy distribution, where one or more of the patches are

under protection. By patchy distribution, we mean that the fish stock is found

at several locations, or areas, and that it travels between these locations. φ

would then contain information about the distance, current conditions and so

on between the patches. These quantities would, for simplicity, be assumed to

be constant.13

The rest of the model is straightforward from the reference model explained

out earlier. We will now specify the model in more detail. We begin with the

biological issues. Natural growth obeys the logistic growth law in each subarea;

F (X;K) = rX

(
1− X

K

)

where r is the intrinsic growth rate, and X is the biomass and K is the carrying

capacity. This means that the aggregated growth will not agree with the logistic

growth for the entire area whenever the densities in the subareas are different.

There is one simple reason for this, and that is that the logistic growth law

is nonlinear in the stock. Thus, in general, one cannot add up two (or more)

logistic functions to obtain a new logistic function. This results in a difference
12This is feasible: dividing a rectangle into two parts with a line parallel to a given side

always produces an interface of equal length, independent of the areas of the parts. As
promised, the notion of geography (or rather, geometry) is useful. A rectangle shaped habitat
is of course a simplification, however.

13Actually, the first notion of the model; one big area divided into two smaller subareas,
implies fundamentally different assumptions. As long as s = 0 or s = 1 there is only one area,
and the fish are uniformly dispersed in the entire habitat. Any change in the stock level at
one place in the area, e.g. harvesting activity, will, with infinite speed, spread throughout the
habitat and an instant later, the density of fish is again uniform. But whenever s ∈ (0, 1),
changes in stock level will equalize immediately in each area, but changes across the areas will
not happen faster than the migration term allows. This is why the growth in the model does
not compare to the growth in the background model, as discussed in the next paragraph. One
way to avoid this problem is to motivate the model with the notion of patchy distributions.
However, this is more of a philosophical discussion, and we will not go into it any further.

8
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in growth for a given total biomass for the two biological models,14 something

that is widely ignored in the literature. Bischi, Lamantia, and Sbragia (2006)

and Flaaten and Mjølhus (2005) recognize and discuss the issue, however. The

former paper suggests an extra term in the growth function to correct for the

difference, the latter investigates both ideas. Notwithstanding, we find it natural

to let the growth in one area depend on local conditions and be independent

of conditions in more remote areas. At least, it makes perfect sense with the

patchy distribution motivation. Before we move on to the economic aspects of

the model, let us describe the growth functions for both the protected and the

unprotected area.

dX
dt

= F (X; (1− s)K) + φ

(
Y

sK
− X

(1− s)K

)
−H

dY
dt

= F (Y ; sK)− φ
(
Y

sK
− X

(1− s)K

)
 (6)

where F is the logistic function. As earlier, X refers to the biomass in the

unprotected area while Y refers to the biomass in the protected area. It is

readily seen that the migration term adds to the stock in the low-density area,

while reducing the stock in the high-density area. Further, the migration terms

cancel in aggregate: i.e., the migration itself does not change the total biomass

level. Also note that the carrying capacity is different in the two areas, according

to the discussion above and that there is no harvest term in the second equation.

‘Growth’ is perhaps not the best word for these functions now; ‘change’ is better.

Now we turn to the economic aspects of the model. There are many things

that influence the economy of a fishery. We simplify and consider two issues:

production technology and demand. The production function has the Schaefer

form,

H = qEX

where q is the catchability coefficient, and E is the effort. As before, X is
14The growth in our MPA model will depend on the distribution of fish between the differ-

ent areas. This is in contradiction to the reference model, where instantaneous redistribution
is assumed. We believe that the distribution does matter, and the MPA model can be com-
prehended as a first approximation to a spatial growth model.

9
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the stock biomass and H is the harvest rate. It simply tells us that a certain

amount of effort applied to a certain stock level yields the harvest according to

the equation.15 There is a constant cost per unit effort; the costs are given by

C(X,H) = cE. If we substitute E according to Schaefer, we obtain

C(X,H) = cE =
cH

qX

We will discuss the interpretation of this expression shortly. There is a down-

ward sloping demand for fish; the inverse demand function has slope −d. The

price of fish is given by P (H) = p − dH, where p is the maximum price the

market is willing to pay for the fish. A higher price leads to full substitution.

We are now able to describe the net profit function,

Π(X,H) = (p− dH)H − cH

qX
(7)

This is the same profit function as suggested by Kugarajh, Sandal, and Berge

(2006). The interpretation of the relationship
c

pq
is important; it is readily

seen that if X =
c

pq
, it is not possible to draw rents from the fishery. The

relationship arises from price normalization.
c

pq
is often referred to as the open-

access solution, which is characterized by zero profits. Further, note that profits

depend on X, the biomass in the unprotected area (i.e. where fishing activity

is allowed), but not on Y , and that there is a stock effect on costs (Hannesson

2006). The stock effect represents an economic protection mechanism on the

stock and implies that rational fishing activity cannot eradicate the stock.

To make both calculations and later discussions easier, we choose to change

the scale of both variables and parameters. A consequence of this transfor-

mation is that stocks are measured in local densities instead of biomass. The

local density is the ratio between the biomass in an area and the local carrying

capacity. To avoid confusion and more notation, we use the same symbols as

before, now in lower case. The main difference is that we talk about densities
15Clark (1990) provides a useful discussion of the Schaefer model and its implications.

10
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instead of biomass. The maximization problem now appears as

max
h

∫ ∞

0

e−γτπ(x(τ ; s), h(τ ; s))dτ (8)

subject to

ẋ = χ(x, y, h) ≡ f(x) +
ω

1− s
(y − x)− h

ẏ = ψ(x, y) ≡ f(y)− ω

s
(y − x)

x(0; s) = x0, y(0; s) = y0, h ≥ 0

 (9)

where ẋ ≡ dx
dτ

, x0 and y0 are initial conditions on the densities, and

π(x, h) = h
(
1− x0

x
− bh

)
f(x) = x(1− x)

 (10)

where x and y are the local densities of fish in the protected and unprotected

area, respectively. χ(x, y, h) and ψ(x, y) are the right hand sides of the dynamic

conditions in (9). Further is b = (1−s)Kdr

p
≡ (1−s)b0, and f is the transformed

logistic function. x0 =
c

pq

1
(1− s)K

is the open-access density level, τ = rt is

the time variable, γ =
δ

r
is the discount rate, and h =

H

r(1− s)K
is the harvest

rate. Note that the migration rate φ has been replaced with ω =
φ

rK
and a

fraction depending on the degree of protection, s. That is, we need to control

for the different sizes of the areas when we use densities instead of absolute

biomass. We will from now on refer to ω as the rate of migration. The value of

the fishery is now given by (8), and we refer to it as v(x, y; s). It relates to the

absolute value as V (X,Y ; s) = pK · v(x, y; s). Thus, the factor pK will cancel

from P, such that

P(X,Y ; s) =
V0 − V (X,Y ; s)

V0
=
v0 − v(x, y; s)

v0
= P(x, y; s) (11)

where v0 = v(x, y; 0). Note that the premium now takes two arguments, as the

11
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model has two state variables and it depends on both.

We should not worry too much about the scaling transformation, the under-

lying structure of the model is of course the same as before. The relations and

effects will hopefully stand out more clearly, however. As an example of the

more lucid structure, consider the scaling of the discount rate:

γ =
δ

r

where δ is the absolute discount rate and r is the intrinsic growth rate in the

logistic function. The scaling tells us that what matters for the optimal solution

of the problem is the ratio between interests from alternative investments and

the return from the stock. This is not a particularly deep insight, it is, however,

obvious from the scaling transformation.

It might seem unnecessary to state the model in both absolute and relative

terms, but the patient reader will discover that both formulations are useful to

us.

The current value Hamiltonian is a useful tool for these kinds of optimization

problems. It is given by

H (x, y, h,m, n) = π(x, h) +m · χ(x, y, h) + n · ψ(x, y) (12)

where m and n are the current value multipliers associated with the two state

variables; x and y, respectively. The multipliers are also known as the shadow

values or the costates. χ and ψ are defined in (9). The first order conditions for

solution of (8) and (9) is now given by (Kamien and Schwartz 1991)

ẋ = Hm

ẏ = Hn

ṁ = γm−Hx

ṅ = γn−Hy

h = arg maxh (H )


(13)

12
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where subscripts denote partial derivatives. The first two equations in (13) are

the dynamic conditions in (9). Remember that the degree of protection, s, is

only a parameter in this system. When we produce numerical solutions, a new

s poses a new problem, which in turn requires a new optimized solution.

ẋ and ẏ are given in (9). For the sake of completeness, we write out the

expressions for ṁ and ṅ according to (13).

ṁ = γm+
x0

x2
h+m

(
1− 2x− ω

1− s

)
+ n

ω

s

ṅ = γn+m
ω

1− s
+ n

(
1− 2y − ω

s

)
 (14)

For inner solutions, h = arg maxh (H ) in (13) yields

Hh = 1− x0

x
− 2bh−m = 0 (15)

Otherwise, we have h = 0. Note that when considering the equilibrium solution,

that is, putting all dot equations in (13) equal to zero, ẏ produces the inequality

y ≥ x. The inequality is strict for any practical purposes (x, y ∈ (0, 1) and

ω > 0).

Before we move on to the results, there are a few things we should be aware

of with this model. The first is a technical issue; the two limits s → 1 and

s → 0. The problem should be clear from the equations in (6); we obtain zero

in the numerators. Analyzing what happens with the dynamics in these limits

is an interesting discussion in itself, but we are not going into it in full detail.

We attend to these limits for the sake of completeness, and only until we have

established what we need to. First, we are interested in marine protected areas,

which implies s > 0. This makes the zero limit uninteresting. Further, with

no protected area we are able to substitute our MPA model with the reference

model. It also turns out that the models are consistent with each other in

this limit. Only variables and structures related to the protected area become

‘singular’, however, the area is nonexistent. Thus, the reference model serves as

a form of benchmark for the MPA model. In the opposite situation, where we

13
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approach full protection (s→ 1), we expect the steady state stock to approach

the carrying capacity and harvests to drop to zero. This is not always true in

our model. That said, a sanctuary covering the entire habitat is not interesting

in the context of this paper. Hence, we will focus on s ∈ (0, 1) and not consider

the upper limit.

An important weakness in the model is the lack of knowledge and information

about the rate of migration. According to McGarvey and Feenstra (2002), three

forms of movement models have been postulated. These are reviewed in Quinn II

and Deriso (1999). The diffusion model is one of them (Quinn II and Deriso

1999, pp.402-403). Fournier, Hampton, and Sibert (1998) estimates movement

parameters in the diffusion sense for South Pacific Albacore, Their estimates,

translated into our migration rate, suggest a rate in the area of 0.1 to 0.3. The

estimates are uncertain, however. We investigate a larger range of migration

rates. Regarding MPAs, McGarvey (2004) estimates the migration rate of fish

stocks from marine sanctuaries. He is, however, not using the diffusion model,

and his estimate is difficult to compare with our understanding of the parameter.

We have chosen not to incorporate uncertainty in the model. One motivation

for that is that there is very much uncertainty about the uncertainty itself, the

probability distribution, the functional form of it, and so on. Additionally,

we would be concerned with uncertainty with regard to several aspects of the

model. Adding a stochastic term, of which we have little empirical knowledge

and know little of its functional form, does not necessarily improve the model.

3 Results

As mentioned earlier, deriving analytic results that are comprehensible is a

difficult and often impossible task in models like this.16 Instead, we resort to

numerical investigations of the model. In the next section we briefly explain
16We are, for example, able to produce an analytical expression for the equilibrium solution

of the problem. The expression for one of the variables will then fill several pages, and it is
hard to make any sense of it.
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how the numerical solutions are obtained, before we turn to the results. Firstly,

we address the premium. Moreover, we consider different measures of efficiency

and examine some time series solutions.

3.1 The Numerical Analysis

We use optimal control theory to produce the optimal management strategy.

Since the problem is autonomous, we are able to produce feedback solutions,

solutions only dependent on state variables, i.e. the densities, and thus are

independent of time. In particular, we use dynamic programming. The problem

is formulated in continuous time, with continuous state variables. We follow the

discretization process in Grüne and Semmler (2004) to make state and time

variables discrete, and to form the Hamilton-Jacobi-Bellman equation for our

problem. However, our approach is a slight variation to Grüne and Semmler

(2004) when it comes to the maximization procedure, as we assume the control

variable, i.e., the harvest rate, to take values in the continuum [0,∞).17 This

is possible because the control variable enters in the profit function (10) to the

second degree. We are thus able to identify a unique control which maximizes π.

The method implies computing a fix point of a dynamic programming operator.

More technical details are found in the appendix.

The parameter values, found in Table 1, are based on data found in Ku-

garajh, Sandal, and Berge (2006). Two relevant parameters are not present in

the table:18 ω and s. As mentioned, little data exist on the migration parame-

ter, ω. We will focus on different values, exploring the effects from various levels

of migration. We consider a range of protection levels, s.
17Grüne and Semmler (2004) asserts that the control variable takes values in a predeter-

mined fixed set of discrete values.
18For parameters for the reference model and the absolute formulation, please refer to

Kugarajh, Sandal, and Berge (2006) and the scaling transformation.
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Parameter Value Explanation
γ 0.1 Relative discount rate
x0 0.15 Open-access density
b0 1.5 Relative demand parameter
p 10. Price parameter (NOK per kilogram)
K 6000. Carrying capacity (1000 kilograms)

Table 1: Parameters concerning the numerical calculations. The price parameter
p and the carrying capacity K are only relevant in the link between the relative
and absolute formulation of the premium, appropriate dimensions are given.
The other parameters are dimensionless, as are the variables of the transformed
maximization problem.

3.2 The Premium of Marine Protected Areas

Figure 1 shows the result from numerical calculations of the premium of an

MPA as a function of s for four different values of the migration rate. There

are three important things to observe in this figure: (i) the premium is positive

and increasing with s; (ii) increasing the migration rate reduces the premium;

and (iii) the premium is smaller than s, which is the same as saying that you

have to give up less in profit than what you protect in habitat, P(s) < s.

The first observation (i) is a consequence of the fact that the model is deter-

ministic and nonlinear and that we optimize returns in the unprotected area.

The second observation (ii) gives us reason to comprehend the migration rate

as a degree of exploitation of the stock in the reserve. For higher migration

rates, less profits vanish and, as we will see in a moment, harvest is reduced by

a smaller amount. The last observation (iii) results from several mechanisms,

but the driving force behind all of them is the fact that density levels change.

Changing densities influences profits directly through the stock effect and in-

directly through the market effect, demand is elastic and prices change when

harvests change. Harvests change due to changes in production. Changes in

production relate directly to the changing stock densities. Migration, which in

this context can be perceived as a part of the production system, also changes

due to changing densities. We shall investigate all of these mechanisms later,

but before that, one more observation is necessary in Figure 1.
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Figure 1: The MPA premium as a function of the degree of protection, P(s).
Parameters are given in Table 1. The different curves correspond to different
values for ω.

Note that the premium curves are convex. Since the curves are increasing,

convexity means that protecting one extra unit of habitat is more costly than

the last unit. For example, by trying to make a protectionist twice as happy by

doubling the size of the reserve, it more than doubles the pain for the commercial

agents in the fishery. This presumably complicates, e.g., the process of deciding

on the degree of protection. What makes the premium convex? We observe

convexity even after setting a zero migration rate. This suggests that the convex

property mainly stems from the nonlinearities in the profit function, i.e., the

market effect and the stock effect.

In Figure 2, we compare the premium from the equilibrium solution in Fig-

ure 1 with the premium arising from the dynamic solution for two different

initial density levels (.1 and 1).19 Notice that the equilibrium curve, which is

19We compare different situations: a situation where the density is uniform at time zero,
that is, when the reserve is established; and a situation where the initial density distribution
matches the equilibrium distribution. In the former situation, the system evolves and presum-
ably converges towards the equilibrium, i.e., a dynamic situation. The latter situation is a
static situation. Such initial conditions are, however, by all practical means impossible. Still,
the results indicate that the comparison is justifiable.
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based on the assumption that the equilibrium density is the initial density, is

found between the curves of the dynamic solutions. This happens as the ini-

tial densities are lower (or higher) than the equilibrium density for all degrees

of protection. That is, the larger the stock when the MPA is established, the

cheaper it becomes. However, we also observe that the gap between the two

dynamical solutions is rather small. This indicates that the initial size of the

stock is not very important for the premium of an MPA. We should remember

that our definition of the premium is a relative measure and that the absolute

premium related to highly profitable stock levels, of course, is much higher than

that of small stock levels, which are less profitable. Still, our results suggest

that using equilibrium solutions when calculating the MPA premium is a good

approximation and its simplicity outweighs the error in doing so. Taking into

consideration that a lot of the input parameters are only roughly known, we

should not worry too much about the use of this simplification. We will use this

approximating approach for the rest of the paper, except, of course when deal-

ing with time series solutions. The appendix provides an example of a feedback

harvest rule and the corresponding value function for our problem (Figure 9).

However, the results in Figure 2 evidently depend on the rate of discounting.

We use a rate of 5 % in the calculations reported in the rest of the paper. The

equilibrium solution is representative for the dynamic solutions to a decreasing

degree for an increasing rate of discounting. Still, after investigating the results

for a range of discount rates, we feel confident that our equilibrium analysis

gives a good estimation of how these things are connected, at least up to a rate

of 20 %.

We shall now investigate the mechanisms behind observation (iii) in Figure

1; P(s) < s. As already stated, the driving force behind the different effects

is the changing density levels as the degree of protection changes. Remember

again that we are considering the equilibrium solution, so what really happens

is that there are different optimal equilibrium positions for different protection

levels. Equilibrium density levels and the harvest rate as functions of the degree
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(a) (b)

(c) (d)

Figure 2: Comparing the static (equilibrium) and dynamic solutions of the
premium for two different initial density conditions: x(t = 0; s) = .1, and
x(t = 0; s) = 1. The four panels correspond to four different rates of discounting:
(a) 5 %, (b) 10 %, (c) 20 %, and (d) 50 %. These are all per annum rates. Other
parameters are given in Table 1. The migration rate is held fixed, ω = .1.
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of protection are displayed in Figure 3(a). We observe that the density in the

protected area is increasing while decreasing in the rest of the habitat. The

increase in density in the protected area reduces production in that area; it

moves away from the level of maximum sustainable yield (MSY), which is exactly
1
2
.20 The production increases in the remaining grounds as long as the density

is above the MSY level, approaching it. As the density falls beyond the MSY

level, production also decreases in the unprotected area. In absolute terms, the

aggregated production is declining as s is increasing in the entire interval. The

falling density in the unprotected area also implies that harvesting costs are

increasing. The decline in harvest (Figure 3) induces a higher market value

of the fish due to the demand mechanism.21 It turns out that the optimal

harvesting strategy is to put a stronger pressure on the unprotected stock, and

reduce the density. The gain in the unit price of fish is larger then the increase

in unit harvesting cost.22 Note that the property y > x is satisfied.

We have identified three mechanisms that have influence on the value of

the fishery: rising costs from declining density (stock effect); decline in harvest

(which we can coin protection effect); and rising prices (market effect). The first

two of these have negative impact on returns; the latter has a positive effect.

As already established, the negative effects outweigh the positive effect with

increasing strength along s and with decreasing strength along ω. We will later

study the interplay between the stock effect and the market effect, when we turn

to time series solutions.

Related shadow values (refer equation (12)) are found in Figure 3(b). The

shadow values are interpreted as the marginal value of the associated state vari-

ables. In the case of a fish stock, it measures the value of fish left unharvested,
20The absolute production may well be rising; as the area size is rising, the actual biomass

in it increases faster when both the size and the density are rising. However, we are interested
in the densities and how effective the production is. When the density level moves away from
the MSY level, the production is less effective, or a smaller part of the potential for natural
growth is realized.

21Note that the scaling of the harvest variable depends on the degree of protection. The
scaling transformation is singular in s → 1, however. We control for the dependence on s in
the reported results, which then are easier to interpret.

22That is, for a small agent in the fishery with an individual, absolute quota, the fishery
becomes more profitable.
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or rather, the value of an additional unit of fish in the sea. Not surprisingly, the

value of that extra unit of unprotected fish increases as more of the habitat is

protected. As the degree of protection increases, the supply of the resource is

reduced. Further, the density in the unprotected area is decreasing. The shadow

value of the protected stock displays some interesting behavior. For small re-

serve sizes, the shadow value is falling, and for large reserve sizes, the value is

rising. The increase for large s is hardly visible in the figure. The effect is more

pronounced for smaller levels of b; that is, a weaker market effect. However,

an additional unit of protected fish has two consequences: production decreases

in the protected area since the stock level moves further away from the MSY

stock level, and migration increases since the difference in density increases.

By studying the shadow price we increase our understanding of the changing

densities, and thus the mechanisms behind the premium curves in Figure 1.

As observed in Figure 3(a), the stock increases rapidly for small reserve sizes,

and slower for large reserve sizes. A possible explanation for the behavior of

the shadow value for the protected stock may be that the negative impact on

production is stronger than the positive impact on migration for small s, and

vice versa for large s.

3.3 Measures of Efficiency

To increase the understanding of the dynamics of the model, we construct and

compute the relative growth efficiency (RGE) for the two areas, which tells us

how much of the potential production is reached in each area. We use MSY as

a benchmark, hence we have RGE(·) = 1 when MSY is attained. Note that we

consider densities and consequently the growth function is f(x) = x(1− x), we

have xMSY =
1
2
⇒ f(xMSY ) =

1
4
. The absolute migration between the areas

is also calculated. The results are found in Figure 4(a) and (b). The growth

efficiency depends on the density level and is given by

RGE(x) =
f(x)

f(xmsy)
=
f(x)
1/4
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(a)

(b)

Figure 3: (a) Density levels and harvest rate as functions of the degree of pro-
tection. The migration rate is ω = 0.1. (b) Corresponding shadow values for
the stock levels in (a). Parameters for both figures are given in Table 1.
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where x is the density in the unprotected area. RGE(y) is defined similarly for

the protected area. The argument indicates the area addressed. The absolute

growth depends on the actual size of the areas. Observe that even though the

density level in the protected area is moving away from the MSY level (Figure 3),

that is, the growth efficiency is decreasing, the migration is increasing for all s

(Figure 4(b)). The gap between the densities increases, however (Figure 3). The

production in the protected area must equal the migration, thus the absolute

production is increasing. It becomes less efficient, nevertheless. Moreover, the

results in Figure 4(b) suggest that the migration is increasing in the migration

rate. It is also interesting that the RGE(x) is more or less unchanged for

different migration rates, while RGE(y) changes a lot. Looking further into

this, Figures 4(c) and 4(d) compares the migration with the natural growth in

the two areas. That is,
φ(y − x)

F (X; (1− s)K)

for the open area and correspondingly for the closed area. We find that the

relationship responds heavily to changes in the migration rate when it comes to

the open area (Figure 4(c)); the production remains more or less the same while

the migration changes. The way the migration outperforms the production even

for small, closed areas may suggest that the migration rates we have chosen to

investigate are too high. As established from the dynamic constraint, there is a

one-to-one relationship between the migration and production in the protected

area for any rate of migration (Figure 4(d)).

The results reveals a weakness in the model, as the area that ‘receives’ the

increasing migration is decreasing with s. This corresponds to the previously

discussed issue of the limit s→ 1. However, comparing the migration with the

carrying capacity of the ‘receiving’ area, i.e., the grounds open to fishing, and

suggesting a condition that migration cannot be larger than the capacity of the

‘receiving’ area,23 the carrying capacity dominates for the reported results; the
23That is, if the rate of migration into any one area is smaller than the carrying capacity

of that area, the suggested condition would not be binding.
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(a) (b)

(c) (d)

Figure 4: (a) Relative growth efficiency in the two areas as functions of s for
three different rates of migration. (b) Measuring the absolute migration between
the two areas, given by φ(y − x). (c) Migration relative to the growth in the
unprotected area. (d) Migration relative to the growth in the protected area.
Parameters for all panels are found in Table 1.
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condition is met. However, the comparison may not be justifiable in general,

comparing a rate with a capacity. Still, we assert that the comparison yields a

useful measure of the validity of the results.

We study two more measures of efficiency. The first is a measure of the

biological gain from establishing an MPA, and is simply the increase in standing

stock. E.g., Hannesson (1998) calls this measure the conservation effect.24 For

this measure, we need to consider the absolute values, that is,

X(s) + Y (s)−X(0)

where X(s) and Y (s) are the absolute standing stock levels for different degrees

of protection, and X(0) is the standing stock level for the no protection case,

s = 0. However, absolute terms are a bit awkward, and, by dividing through

by X(0), we convert the measure into a relative measure, the relative biological

gain (RBG).

RBG(s) =
X(s) + Y (s)

X(0)
− 1 (16)

The measure compares the size of the equilibrium standing stock under the two

different strategies: reserve and no reserve. It turns out that the shape of these

curves is similar to the shape of the premium curves (Figure 1). Thus, we find

it natural to compare these, that is, in Figure 5 we consider the relationship

RBG(s)
P(s)

One could say that this relationship compares the relative increase in biomass

(capital) with the relative loss in total profit. Figure 5 shows the result for a

range of different values for the migration rate. In order to provide a complete

analysis, the corresponding curves for RBG(s) are found in the appendix (Figure

8).

24When we suggest this effect as a gain, it should not be read that any increase to any level
of biomass is positive in terms of the total value of the stock. It is, however, a measure of the
increase in biomass, or capital, and thus a type of gain.
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Figure 5: The relative biological gain compared to the premium of MPAs,
RBG(s)
P(s)

, for different values of the migration rate. Parameters for the cal-

culations are found in Table 1.

The evidence from Figure 5 is that the premium dominates the biological

gain for all degrees of protection and for most rates of migration.25 A higher

migration rate dilutes the conservation effect ; that is, the biological gain. This is

an important mechanism behind the reduction in the premium from increasing

the migration rate. Moreover, the results imply that the premium declines

faster than the biological gain with the migration rate. The slope of the curves

in Figure 5 is decided by the relationship between the slopes of RBG(s) and

P(s); for small s, the premium curve has the steeper slope and vice versa for

large s.

While RBG(s) measures how much the MPA strategy increases the standing

stock, the measure we construct next concerns the share of the standing stock

that is protected. From the property y > x we know that the density is higher

in the reserve, thus the protected share of the total stock is larger than the

protected share of habitat, s. What we want to know is how much more of the

25That is,
RBG(s)

P(s)
< 1⇒ RBG(s) < P(s); the premium dominates.
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biomass is found under protection than the share s. The share s of the biomass

is found under protection with certainty for any nonnegative migration rate.

We can perceive this as a measure of how effective the MPA is to protect the

stock. We name this measure the biological efficiency (BE), biological in the

sense that it is a biological quantity we measure. That is,

BE(s) =
Y

X + Y
− s (17)

Figure 6 displays BE(s) for different values of the migration rate. It must be

zero in s = 0 and s = 1, and positive for all other s ∈ (0, 1), given that the rate

of migration is positive and finite. This follows from the equilibrium property

y > x. BE(s) decreases with the migration rate. This is in line with the earlier

results. A high rate of migration reduces the conservation effect and that, as the

migration rate goes to infinity, the density is uniformly dispersed: BE(s) = 0.

The expression in (17) arises from comparing the two different growth models

discussed earlier. The comparison suggests that whenever s equals the share

of the stock found in the protected area, implying that the density is uniform

in the entire habitat, the growth in the two models compares exactly. Any

other s in the MPA model yields a smaller total growth. The ‘lost’ growth

is a consequence of the convexity of the logistic function and the dispersed

densities. BE(s) assess the displacement between the best possible dispersion

when it comes to total, natural growth (uniform dispersion) and the equilibrium

dispersion. Thus, we can comprehend BE(s) as a measure of inefficiency in the

production system. The analytical comparison of the two growth models and

the derivation of (17) are found in the appendix.

3.4 Time Series Solutions

Up until now, we have studied the equilibrium solution to the problem. We

will finally turn to the dynamic solutions. We present a comparison of two time

series solutions: one with and one without an MPA. Or rather, we compare
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Figure 6: Biological efficiency, BE(s) for different values of the migration rate.
Other parameter values are found in Table 1.

the solution of the reference model with the solution of the MPA model. We

investigate the density distribution, the harvest rate and the real unit price of

fish as functions of time. The MPA covers half the habitat of the fish stock.

Figure 7(a) shows density paths where the initial stock level is only 10 % of the

total carrying capacity. The fish are uniformly dispersed in the two areas at time

zero; the densities in the two areas are equal. The figure also displays the average

density of fish in the MPA case, and the curve is thus comparable to the reference

case. Corresponding catch rates are found in Figure 7(b). We observe that the

average density is always higher with an established reserve, consequently the

total standing stock is larger in the MPA situation. Further, the density in the

unprotected area is smaller than the density in the no reserve case; the stock

effect induces higher harvesting costs with the MPA tool. The catch rate is

always higher without the reserve. Further, it seems the system approaches

the equilibrium slower when there is no reserve. There is a ‘moratorium’ the

first years, until the stock has been rebuilt to levels above the open-access level.
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The ‘moratorium’ is lifted earlier in the no MPA case. The two systems (MPA

and no MPA) follow the same path as long as the harvest is zero; that is, as

long as the density is uniformly dispersed. In Figure 7(b) the real unit price of

fish is calculated. The price is always higher in the reserve situation. We have

two effects in play here: changes in harvest level change the price of fish in the

market, and changing densities influence costs related to catching. A higher real

price in the MPA case implies that the market effect outruns the stock effect

and the net return per unit of fish increases with the reserve in place. There is

typically room for fewer active agents in the fishery, however, as the total catch is

smaller. These results depends on the relationship between the price parameter

p and the demand parameter d. Certainly, there exist parameters such that

the conclusion is reversed; a weaker market effect compared to the stock effect,

and the fishery becomes less profitable for the agents as a consequence of the

establishment of a marine reserve.

4 Conclusions

Hannesson (2002) is skeptical to advocating marine protected areas as a bet

hedging tool, and Sanchirico (2000) dismisses the use of the term insurance

related to reserves. However, there is a wide consensus that MPAs as a man-

agement tool has the potential to reduce uncertainties in several aspects of a

fishery. To be able to evaluate the usefulness of this management tool, thorough

analyses of economic and biological effects are required, particularly when such

instruments are implemented. In this paper, we have gone to new depths in

analyzing the cost induced from establishing a protected area. We reveal and

discuss how these costs are generated and study the different mechanisms that

work on both economic and biological factors. Different measures of efficiency

are proposed.

The main finding is that costs are smaller than the share of protected habi-

tat compared to the total profits, and that protecting one more unit is more
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(a)

(b)

Figure 7: (a) Densities as functions of time. Two protection scenarios are
compared: s = 0.5 and s = 0. Local densities in the first scenario are also
reported. (b) Comparing the harvest rate and the real unit price of fish in the
same two scenarios. The migration rate is set to ω = .1 in both panels, further
parameter values are found in Table 1.
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costly than the last unit protected, i.e., convexity. The convex property of the

premium may complicate things when trying to decide on an appropriate degree

of protection. In particular, the lack of knowledge on the migration term fur-

ther entangles the process. The results are based on numerical calculations and

the generality depends on the choice of parameter values. However, the model

displays mostly monotonic behavior when we alter the different parameters for

large intervals around the chosen parameter. We believe that our conclusions

are quite general, but that the strength of the different effects observed are more

uncertain.

We have investigated different measures of efficiency. We find that a reserve

leads to less efficient biological production. Results suggest that the rate of

migration is decisive when comparing the relative increase in the standing stock

with the premium of the MPA. Further, the share of stock found in the reserve

compared to that of protected habitat is investigated. This measure could be

understood as the marginal biological value of the protection, it demonstrates

the increase in protected biomass relative to the degree of protection.

Our analysis also shows that the fishery potentially becomes more profitable

to the active agents. However, this effect is critically dependent on the cho-

sen parameters. Another set of parameters may very well give the opposite

conclusion.

All the results aside, we have demonstrated that the perspective on ma-

rine protected areas presented here increases the understanding and clarifies

the influence and importance of the different effects and mechanisms that are

involved. We also suggest there is room for improvements and further investiga-

tions within this framework. In particular, we would like to see the results from

introducing a stochastic element in the model. Studying more sophisticated

biological and economic submodels will potentially provide additional insights.
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A Appendix

Comparing Growth Models

In absolute terms, the total natural growth in the entire area in the MPA model

less the total natural growth in the reference model is given by

F (X; (1− s)K) + F (Y ; sK)− F (X + Y ;K) =

rX

(
1− X

(1− s)K

)
+ rY

(
1− Y

sK

)
− r(X + Y )

(
1− X + Y

K

)

This expression should be equal to zero if there is no difference in the two

growth models. The first factor in each term and the carrying capacity cancel

each other, thus obtain

(X + Y )2 − X2

1− s
− Y 2

s
= 0 (A-1)

Solving this equation for s yields the double root

s0 =
Y

X + Y

which shows that the growth is equal in the two models when the fraction

of biomass in the two areas is proportional to the fraction of habitat under

protection. Whenever that is the case, the density is uniform in the entire

habitat; i.e., the situation is identical in the two different models. Equal growth

would then be anticipated. The expression for s0 appears in (17).

Further, s0 being a double root implies that the expression in (A-1) is either

positive or negative for all s 6= s0. It is readily seen that the expression is

negative. Hence,

F (X; (1− s)K) + F (Y ; sK) ≤ F (X + Y ;K)

The natural growth in the reference model is always bigger or equal to the total
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natural growth in the MPA model.

Details on the Numerical Solution Scheme

The dynamic programming operator T is given by

T∆τ [v∆τ ](x) = max
h∈[0,∞)

[
∆τ · π(x, h) + β

∂v∆τ (x)
∂x

]
(A-2)

where x is the discrete state variable, h is the control variable, ∆τ is the discrete

time step, v∆τ (x) is the value function with respect to the time step and discrete

state variable, and β = 1 − ∆τ · γ, the discrete discount rate. The discrete

variables, time step, and discount rate stem from the discretization procedure

given in Grüne and Semmler (2004). Note that we have omitted the s-parameter

in the value function. To maximize our problem (8, 9), we approximate a

solution to the fixed point equation

v∆τ (x) = T∆τ [v∆τ ](x)

Solutions are produced from an iterative process (Grüne and Semmler 2004,

Bertsekas 2005). The numerical solutions are approximations as we end the

iterative process when an error measure satisfies some predetermined condition.

Figures

The relative biological gain, RBG(s) is displayed for two different values of the

migration rate in Figure 8. Observe that the conservation effect declines with

an increasing migration rate.

Figure 9a displays an example of an optimal feedback harvesting rule. The

corresponding value function is presented in Figure 9b. The value function

yields the value of a fishery for given initial densities.
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Figure 8: The relative biological gain, RBG(s), for four different values of the
migration rate. Further parameters are found in Table 1.
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(a)

(b)

Figure 9: (a) Optimal feedback harvesting rule. (b) The value function corre-
sponding to the given harvest rule. The migration rate is set to ω = .1 in both
panels, and s = 0.5. Further parameter values are found in Table 1.
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