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Abstract1 

This paper addresses the forecast accuracy of individual inflation forecasts from the Survey of 

Professional Forecasters. Based on a variety of accuracy statistics, there are five main findings 

to report of. First, I find that some individuals are able to accurately predict inflation over time, 

and that forecasters on average have improved their accuracy over time. Second, forecasting 

accuracy becomes worse during recessions compared to the average accuracy in the respective 

decades but accuracy have improved in newer recessions compared to old ones. Nonetheless, 

some individuals are able to outperform the mean forecast and a forecast made from a random 

walk model. Third, I find no difference in accuracy among industries but I find evidence for 

biased forecasts for the three and four quarter horizon. Fourth, I find evidence for bias in 

roughly one-third of the individuals for all forecasting horizons. These results improve slightly 

when only data from the last two decades are being analysed. Fifth, the majority of individuals 

perform significantly worse than a random walk model regardless of used time span. 

I also find several problems with the database, including: missing values for the one-year-ahead 

forecast, irregularities in forecasters’ response, reallocation of used ID’s, changing base year and 

inconsistencies in individuals’ forecasts. 

  

                                                 

1 This paper was written as a part of the Master of Science in Economics and Business Administration at NHH. 
Neither the institution, the advisor, nor the sensors are - through the approval of this thesis - responsible for neither 
the theories and methods used, nor the results and conclusions drawn in this work. 
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Introduction 

Over the years a large amount of studies on inflation expectations from surveys have 

accumulated. One of the oldest surveys available in the U.S. is the Survey of Professional 

Forecasters (SPF) which started in 1968 and is now conducted by the Federal Reserve Bank of 

Philadelphia.2 Surveys have undergone extensive testing by economists and have undoubtedly 

participated greatly in the economic research the past 40 years. They have been used to test 

rational expectations theory, to analyze the formation of inflation expectations, in empirical 

research in macroeconomics, to investigate the formation and impact of monetary policy, and in 

a variety of other studies (Croushore 2009). 

The importance of inflation expectations has been heftily debated even though it plays a crucial 

role in many economic agents’ decisions (Elliott and Timmermann 2008; Mankiw et al. 2003). 

In an interview study of public attitudes towards inflation, Shiller (1997, cited in Shiller (2000)) 

showed that the general public pays a lot of attention to inflation, and it is widely believed that 

the inflation rate is a barometer of the economic and social health of a nation. He found that 

people had great feelings toward inflation, and perceived high inflation “as a sign of economic 

disarray, of a loss of basic values, and a disgrace to the nation, an embarrassment before 

foreigners” (Shiller 2000, p. 37). Consequently, it is reasonable to believe that economists pay 

attention to the variable and are able to give realistic forecasts. Is it really so? Are professional 

individual forecasters able to accurately predict future inflation rates? 

In this paper I will attempt to make an assessment of the forecast accuracy of the forecasts in the 

SPF database. In order to separate my thesis from the vast literature which already exists on the 

subject, I have made some choices. First, due to the large emphasis on longer forecasting 

horizons in previous studies, especially the one-year-ahead horizon, I have chosen to keep the 

main focus on shorter horizons. Second, I will mainly focus on individual inflation forecasts and 

                                                 

2 Prior to 1992, when the Federal Bank of Philadelphia took over the survey, it was called the ASA-NBER Economic Outlook 

Survey. For simplicity I will only call it the SPF henceforth. 
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not the consensus view which is more common. Third, I will use the GDP price index as my 

measure of inflation in contrast to the consumer price index which is more frequently used. 

In this paper I find that some forecasters are able to predict inflation accurately over time, and it 

also seems as they are getting better at it over time. This conclusion does not hold for all 

forecasters, however. Next, forecast accuracy gets worse during recessions compared to the 

average accuracy during the respective decades. Some individuals, on the other hand, perform 

well in recessions and outperform a same change random walk model. Further, I find no 

difference in accuracy between industries but it seems as all three industries are biased for the 

three and four quarter horizons (at a five percent significance level). This is to my knowledge 

not documented before and thus represents an important finding. I also find evidence for some 

biased individuals, but the majority of forecasters are unbiased for all horizons (about 2/3 of the 

individuals). Last, most individuals, especially for the three longest horizons, do not add 

additional information compared to the forecast given by the same change random walk model. 

In other words, most of the forecasters fail to outperform the benchmark model. No newer 

papers have compared the random walk model and survey forecasts against the GDP price 

index. This result is still somewhat striking. Other studies find that survey forecasts outperform 

times series models when forecasting CPI inflation (Ang et al. 2007). Some do find, however, 

that the random walk model performs very well for some measures of inflation which could 

explain its good performance in this paper (Atkeson and Ohanian 2001). 

The outline of this paper is as follows. First I will present a theoretical framework with terms 

used in the paper, and arguments for and against using survey data. The second part will consist 

of the methodology used to assess the forecast accuracy, followed by part three which presents 

some characteristics with the data. The fourth part concerns the SPF database, and includes an 

introduction and a section on potential problems and caveats with the dataset. Next, in the fifth 

part, I present the results of my analysis concerning forecast accuracy. Sixth and last, I will give 

my concluding remarks and give some direction for future research. 
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Literature review 

There are two characteristics which are widespread in most of the literature on inflation 

expectations from surveys. First, studies have shown that pooling or combining data into a mean 

(often called “consensus” (Gregory et al. 2001)) creates a more consistent and accurate forecast 

(Batchelor and Dua 1995). Thus, most studies use the consensus forecast when studying 

expectations. Second, due to the large revisions of the national income and product account 

(NIPA) variables (such as GDP) there can be problems if these are used as a measure of 

inflation (Croushore 2006). Consequently, most researchers studying the SPF have used a 

variety of the CPI as their inflation measure, after it was introduced in 1981q3.3 

One of the first studies on the SPF database was conducted by Su and Su (1975), who assessed 

the accuracy of forecasts using only a few years of data. They found that forecasts from the 

database were significantly better than autoregressive extrapolations. They also stated that the 

SPF forecasts are better at forecasting changes in the levels of the data than the levels 

themselves. Some years later, Hafer and Hein (1985) compared the accuracy of three different 

inflation forecasting procedures; an univariate time series model, an interest rate model and 

forecasts from the SPF. Their general conclusion was that the median survey forecasts of the 

implicit GNP deflator provided the most accurate ex ante inflation forecasts, even though they 

used data from the most volatile period in the whole survey time span.4 Nevertheless, their 

results were in line with those of Su and Su, namely that SPF forecasts outperformed simple 

time series models. Another economist who has tested the SPF database extensively is Victor 

Zarnowitz. One of his first studies on the SPF forecast accuracy also included tests on an 

individual level for the first time. He argued that only using means or medians raised the 

possibility of aggregation errors such as differences among individuals and sampling variation 

(Zarnowitz 1984). Even though he acknowledged the importance of examining individual data, 

he still concluded that the consensus forecasts on average over time are more accurate than most 

                                                 

3 Here q denotes quarter, and this notation should thus be read as first quarter in 1981. It will be used throughout the paper. 
4 During the 1970s and early 1980s the U.S. experienced a high inflationary period, with severely high growth. See section 3.3.1. 
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individual forecasts and that this conclusion was valid for all variables and horizons. He also 

said that those individuals who did outperform the consensus had no common characteristics. 

Later, an even broader and more comprehensive study of the SPF database were conducted by 

Zarnowitz and Braun (1993). Here they provided a wealth of analysis on the database, with 

several important findings. First, they documented that forecast errors typically increase as the 

horizon increase, which is logical since there is more uncertainty associated with predicting 

development in macroeconomic variables further into the future. Second, they also stated that 

forecasters differed in many respects and therefore also their forecasts would differ. 

Nevertheless, they found some common trends among the individuals and argued that this was 

due to common information sets, and interaction and influence with fellow forecasters. Third, 

they found great differences in the extent to which macroeconomic variables can be forecasted. 

Variables with high autocorrelation (such as real GDP) are easier to predict than those which are 

highly random (e.g. business inventories). Fourth, they found no evidence for an improvement 

in forecasting over time, despite an improvement in computer technology and access to more 

modern economic theories. Fifth, they underlined the findings from earlier studies that group 

consensus outperform the majority of individuals and thus represents an accessible and 

inexpensive method for improving forecasts from individuals. Last, they demonstrated that 

consensus survey forecasts perform favorably in comparison to most simple time-series models.  

There have also been conducted numerous studies testing the survey for bias, i.e. if the forecast 

errors are zero on average. Such tests are also imperative to prove rationality among individuals, 

i.e. if forecasters make repeated errors over time or not. The first tests on the Livingstone 

survey, a survey among businesses, were not positive as tests suggested that forecasts were 

biased and as a consequence not rational (Pearce 1979; Akhtar et al. 1983).  However, in a study 

on the SPF database the conclusion was opposite: Zarnowitz (1985) concluded that 85 percent 

of individuals were unbiased. On those who were biased, half were forecasts of inflation. These 

results of biasedness and irrationality provided forecasters with a bad reputation, and many 

economists started to believe that forecasters in fact were irrational or that surveys were not 

representative for market agents` real inflation expectations (Croushore 1996, 2006). That being 

said, there were other reasons for the bad performance during these years. First, there were 
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unexpected OPEC oil shocks in the early 1970s which drove up the rate of inflation. This was 

very hard to predict, which is why most forecasters performed badly and seemed biased during 

these times (Croushore 1993). Second, researchers were not aware of a problem economists 

today call the overlapping observations problem. When a shock hits the inflation variable, it 

affects not only one quarter but several consecutive quarters. The reason for this is that the 

length of the forecast horizon normally is longer than the interval between the surveys, thus 

making the forecast errors correlated. By not taking this into consideration in their tests, 

researchers overstated the case against the surveys (Croushore 2009). In a later study on 

rationality, Keane and Runkle (1990) tested individuals from the SPF database and stated that 

much of the preceding literature on rationality were flawed for four reasons. First, the use of 

consensus forecasts was wrong because individuals may have differing information sets. 

Second, they did not put enough effort in correct for revisions in the underlying data. Third, data 

from the Michigan survey, a survey directed at households, were not trustworthy due to lack of 

incentive for the respondents to be rational in their responses. Fourth, past researchers failed to 

account for correlation in forecast errors across forecasters. When they dealt with all these 

previous mistakes they found that forecasters were unbiased and efficient, in contrast to most 

previous studies. 

Newer research papers have chosen other interesting topics for their studies. Mehra (2002)  

argues, among other, that the predictive ability of a forecaster has more to it than just 

outperforming a simple naïve benchmark (which, according to Mehra, is what earlier studies 

have assumed). He uses the test of Granger-causality to determine if the survey contains 

additional information about the subsequently realized inflation values than the past values. His 

findings suggest that survey forecasts do in fact Granger-cause inflation, meaning they can help 

predict actual future inflation. He also concluded that forecasters from the SPF were biased. 

Another interesting study was conducted by Mankiw et al. (2003). They discovered substantial 

disagreement among forecasters, i.e. that forecasts given for the same variable and horizon can 

vary substantially among individuals. They believe that this oversight can be explained by the 

fact that standard theory does not open for disagreement. By using a sticky-information model, 
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in which forecasters only periodically update their expectations due to high costs of collecting 

and processing information, they can explain much of the disagreement present in the data.  

A fairly new study by Ang et al. (2007) compare and contrast four methods of predicting 

inflation: time-series models, regressions based on the Phillips curve using measures of 

economic activity, term-structure models derived from asset prices, and surveys. They conclude 

decisively that the survey-based measures yield the best results for forecasting CPI inflation, 

which seems to be in line with previous comparisons between surveys and time series models. 
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1. Theoretical framework 

Before turning to the analysis of the data, it is important to have some insight on the formation 

of expectations and why it is so important. This section will provide a brief explanation of these 

questions, and will also present some arguments for why I have chosen individual data from the 

SPF as my data. 

1.1 Expectations 

1.1.1 Why are expectations important? 

Expectations are very important for most people, even though many may be unaware of it. 

Almost everyone use expectations as a foundation for making everyday decisions, e.g. 

consumers, businesses, investors and authorities (Elliott and Timmermann 2008). Consumers 

alter their spending and saving based on the economic outlook, more specifically on factors such 

as future employment level and wage growth. Businesses use their expectations of future 

income and profitability to make investment decisions and to decide what strategy they are 

going to pursue. Investors use their expectations as a basis for decisions on what kind of assets 

to invest in, when to invest and much more. Most importantly, perhaps, is the importance of 

expectations for authorities` decisions. For example, it is crucial for central banks to take into 

consideration what expectations the consumers have when making policies, and it has a great 

deal of influence on wage negotiation (Thomas 1999). All of these decisions, which are based 

on expectations, will in turn affect the growth and inflation level in the economy. 

Inflation expectations have been an especially popular topic among researchers. The reason for 

this is probably because of the central banks` introduction of inflation targeting. It then became 

vital to check what people actually think and reveal if they use the information they should in 

order to make correct forecasts. Kershoff and Smit (2002) stated that almost every central bank 

with an inflation target studies inflation expectations surveys when forming monetary policies. 

This even goes for countries without a formal inflation target, like the U.S. If people do not 
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make accurate inflation forecasts it means that they do not manage to make use of all the 

relevant information in order to predict the future. Thus, it becomes equally difficult for the 

authorities to alter the peoples` expectations in order to affect the economy. A relevant example 

can be drawn from the recent economic crisis. As the economic growth plundered, and the 

employment level surged, people were starting to expect harder times and therefore started to 

cut their spending and increase their saving. The housing market bubble also left a lot of people 

without savings, thus reducing their spending even more. All of this affected the economy 

negatively and reduced growth further. This negative spiral would have continued if the 

authorities did not implement policies which altered people`s expectations and incentives to 

increase their spending. Low interest rates is one example of a policy which was meant to 

convince people that measures were being made to save the economy, and thus reducing the 

negative expectations people had. 

1.1.2 The formation of expectations 

Discovering how economic agents form their expectations is critical to our understanding of 

many economic outcomes. In the earlier years, when the term expectation was introduced, the 

common belief was that expectations were formed solely by looking at historical values of the 

variable; a so-called adaptive formation. Today, this thought is rejected by most researchers and 

is viewed to be too simplistic. A new theory arrived and argued that agents are rational, which 

simply means that forecasters employ all available information when forming future 

expectations (Akhtar et al. 1983). The underlying principle behind this change of thought was 

that agents are intelligent, and thus are able to correct for mistakes made in the past when 

predicting the future. This leads to the first of two characteristics of a rational forecaster: they do 

not systematically make errors. An important test in this regard is a test for bias, i.e. a test to 

check if the average forecasting error is equal to zero. The second characteristic concerns the 

issue of efficiency. In order for a forecaster to be efficient, he/she have to make use of all 

relevant information when forming their expectations. In this paper I will primarily focus on the 

first of these two characteristics, namely the forecasting accuracy. 
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 Even though rational expectations have been widely accepted as the best way of describing the 

formation of expectations, there have been some critics which proclaim that the rational 

expectation formation theory was too easily accepted. Chow (2011), for instance, argues that 

there was insufficient empirical evidence for accepting the rational expectations hypothesis and 

gives strong econometric evidence supporting the adaptive expectations hypothesis. It is 

probably more reasonable to believe that the formation follows a path which lies between the 

two extremes of adaptive and rational formation (Roberts 1998).  

1.2 The Survey 

In this paper all analysis will be based on survey data from the SPF.5 In this section I will 

present some general arguments for and against using this kind of data material based on earlier 

literature. 

1.2.1 Why use survey data? 

Surveys are a method for collecting data from a chosen sample of the public. The sample can 

then be used to make statistical inferences about the population. In this case a survey is used to 

ask a certain group of people about their predictions for the GDP price index variable, among 

others. The mean of the responses can be interpreted as a consensus for the expected inflation 

rate. 

According to Galati et al. (2011) surveys are one of two major methods to get hold of inflation 

expectations if one wants to work with such data. The first method consists of extracting 

inflation expectations using financial market instruments linked to some measure of inflation, 

e.g. bonds. If combined with a nominal counterpart one can back out financial markets` inflation 

expectations. It comes with a drawback, however, because it can be a bit technical to do the 

calculations in order to extract the expectations. What is more, one also has to take into 

consideration inflation-risk premium and liquidity premium (among others) which also increases 
                                                 

5 See section 4 for more on the SPF database. 

SNF Working Paper No 51/12



15 

 

the difficulty of this method. The second method is to use survey data, i.e. ask participants in the 

market what they believe (or expect) future inflation will be. This approach entails less 

knowledge about technical procedures, is easy to interpret and there are several surveys being 

conducted for several countries which are ready for use. However, as Galati et al. (2011) points 

out, it comes with some shortcomings. First, most surveys have a low frequency on their data 

making them less suited for analysis concerning existence and timing of breaks in formations 

over short horizons. Second, they question the reliability of respondents as there is no way to 

make sure that they actually live up to their predictions. Hopefully, this problem will be less 

prominent when using professional forecasters (more on this in the next section). Third, it is also 

pointed out that different surveys provide totally different results on inflation expectations. In a 

study undertaken by Mankiw et al. (2003), where they looked at over fifty years of data on 

inflation expectations in the U.S., they found substantial disagreement among both consumers 

and professional economists about expected future inflation. Nevertheless, due to its simplicity 

and easy access, survey data seems like the most reasonable choice. 

1.2.2 Why use professional forecasters? 

Surveys can be conducted on many different types of groups. In the U.S., for example, they have 

surveys asking household consumers (the Michigan Survey), businesses (the Livingstone 

Survey) and professionals (the SPF). 

As stated by Gerberding (2006), participants in household surveys are more likely to have an 

opinion on the expected direction of future inflation than they are to give a precise predicted 

change for different horizons. In other words, she presents an argument in favour of qualitative 

data. In order to do an empirical analysis on such data, however, one needs to do a 

transformation to quantitative data which will inevitably bring along some uncertainty in the 

data. This is not likely to be a problem when using surveys with professional forecasters. They 

produce forecasts in their daily jobs, and should therefore be qualified to do a quantitative 

response to the survey. What is more, they also have a strong incentive to do a proper analysis 

before they turn in their answers as wrong answers may create some stigma in their professional 

life. This cannot be said of household or business (to some extent) surveys as they do not have 
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to defend their answers in the same way. The same argument is underlined by Keane and Runkle 

(1990) who argue that professional forecasters predict the same expectations which they sell in 

the market and thus have an incentive to be accurate. What is more, others, e.g. Mestre (2007) 

and Ang et al. (2007), also conclude that professional forecasters outperform other agents on 

inflation expectations. Choosing professional forecasters as a source of data thus seems as a 

reasonable choice. 

1.2.3 Why use individual data? 

Most of the literature on inflation expectations in surveys makes use of the mean or median 

forecasts in their studies. No wonder, since almost all articles on the matter conclude that 

consensus forecasts are superior to individual forecasts. A study by Bates and Granger (1969) 

was one of the first studies which concluded that a combined set of forecasters can result in a 

higher accuracy than either of the original forecasts. Further, in a review of the literature on 

combining forecasts where over 200 articles were studied, Clemen (1989) found that forecast 

accuracy can be substantially improved through the combination of multiple individual 

forecasts. Newer research has reached similar conclusions. Batchelor and Dua (1995), for 

example, stated in their paper that individual responses may contain behavioural biases which 

could be removed if pooled together (in Batchelor (2000)). 

There are those who argue for using individual data. Zarnowitz (1984) studied the accuracy of 

individual and group forecasts, acknowledging the importance to study both sides. Nonetheless, 

he concluded that “the group mean forecasts [...] are on average over time more accurate than 

most of the corresponding sets of individual predictions. This is a strong conclusion [...]” 

(Zarnowitz 1984, p. 15). Keane and Runkle (1990), in their study on rationality of individuals, 

gave a sharp critique of earlier studies on the subject. One of their arguments is that averaging 

individual forecasts will mask individual deviations from the consensus. If one group of people 

consistently make positive errors while another consistently make negative errors, the mean will 

become unbiased. They argue that the information given by the deviating groups are too 

important to loose in averaging all forecasts.  
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Lately, there have been very few papers analysing individual data. This makes it intriguing to 

investigate what affects individual forecasting accuracy under different scenarios or during 

different time periods. This paper will therefore focus on the forecast accuracy of individual 

forecasts. 
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2. Methodology 

This section will provide an outline of the methods used to assess the performance of the SPF 

database. This includes different measures for analysing the forecast accuracy, and some 

statistical tests for comparing the performance between two different sources of forecasts. 

2.1 Forecast accuracy 

When talking about “the best” forecasting method one often interprets this as the forecasting 

method which is most accurate, i.e. result in the smallest error. There are several methods for 

evaluating a forecasts’ accuracy, but most of them are calculated by comparing the values of the 

forecast against the actual (real) values of the same series.6 The forecast error is therefore 

defined as 

𝑒𝑡 = 𝐴𝑡 − 𝐹𝑡 

where At is the actual (real) value of the variable in question at time t, and Ft is the forecasted 

value at time t. 

I will use four different forecasting horizons in my analysis. They will range from a one quarter 

horizon to a four quarter horizon. The actual forecasts are calculated as follows: 

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 1𝑞 = 100 ∗  (𝑝𝑔𝑑𝑝3 𝑝𝑔𝑑𝑝2⁄ − 1) 

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 2𝑞 = 100 ∗  (𝑝𝑔𝑑𝑝4 𝑝𝑔𝑑𝑝2⁄ − 1) 

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 3𝑞 = 100 ∗  (𝑝𝑔𝑑𝑝5 𝑝𝑔𝑑𝑝2⁄ − 1) 

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 4𝑞 = 100 ∗  (𝑝𝑔𝑑𝑝6 𝑝𝑔𝑑𝑝2⁄ − 1) 

                                                 

6 See for example Batchelor (2000), Mehra (2002) and Zarnowitz and Braun (1993). 
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Where pgdp1 to pgdp6 are the actual level forecasts given by the respondents in time t-1 to t+4 

(i.e. pgdp1 is the inflation level for last quarter, pgdp2 is the inflation level for the current 

quarter, pgdp3 forecast for next quarter etc.). 

In this section I will discuss different ways of measuring forecast accuracy. More specifically, I 

am going to make use of three different measures: 1) mean absolute error, 2) mean prediction 

error and last, 3) root mean squared error. When comparing the individual forecasts with those 

from the time series models, I will use Theil’s U-statistic and a forecast comparison regression. 

2.1.1 Mean absolute error 

The first measure discussed is mean absolute error (MAE):  

𝑀𝐴𝐸 = �
|𝑒𝑡|
𝑁

𝑁

𝑡=0

 

where N is the total number of observations and t denotes time. This measure is preferred if one 

think the error is linear, rather than quadratic, because it ignores the sign of the error. This 

implies that a forecast error which is one too low represents just as much as a forecast error 

which is one too high. The closer MAE is to zero, the more accurate the forecast is. 

2.1.2 Mean prediction error 

The second measure of forecast accuracy used in this paper is the mean prediction error (MPE): 

𝑀𝑃𝐸 = ��𝑒𝑡 𝑁� �
𝑁

𝑡=0

 

This measure is a simple average of the forecasting errors and hence should be close to zero 

over a time period in order for a forecast to be unbiased. A positive value indicates that the 

forecaster have underestimated actual values, while a negative MPE indicates that forecasters 

have overestimated actual values.   
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2.1.3 Root mean squared error 

The third, and last, measure discussed in this section is the root mean squared error (RMSE): 

𝑅𝑀𝑆𝐸 = �
1
𝑁
� (𝑒𝑡2)

𝑁

𝑡=0
 

This measure is computed by squaring all errors, thus removing the sign of the error. The 

average of all errors are calculated (producing mean squared errors, or MSE), and as the name 

suggests, RMSE is the square root of MSE. The main difference between MAE and RMSE is 

the assumption of the characteristic of the error. In contrast to the MAE, RMSE assumes a 

quadratic error. This implies that an error of two percent is treated four times (22) as serious as 

an error of one percent (in contrast to MAE where a two percent error is treated as twice as 

serious as a one percent error, because of assumed linearity in the error). Therefore, the RMSE 

put a larger penalty on forecasters who make a few large errors, relative to forecasters who make 

a larger number of small errors (Batchelor 2000). The forecast accuracy improves as the RMSE 

moves closer to zero. 

2.1.4 Theil’s U-statistic 

Theil's U-statistic is a simple measure on how well a model performes compared to a naive time 

series model. The idea behind the rule is that if a forecast is to be taken seriously, it should be 

more accurate than the forecast given by a simple benchmark. The measure compares the RMSE 

of the two models, as the definition shows: 

𝑇ℎ𝑒𝑖𝑙`𝑠 𝑈 =
𝑅𝑀𝑆𝐸 𝑜𝑓 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑅𝑀𝑆𝐸 𝑜𝑓 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑚𝑜𝑑𝑒𝑙
 

In such a model, a value equal to one means that the two models have identical RMSE and thus 

are equally accurate. A value above (under) unity implies that the forecast (benchmark model) 

have a higher RMSE, and thus have performed worse (i.e. been less accurate). 
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2.1.5 Benchmark model 

To assess the performance of the forecasts it is not enough to just look at accuracy statistics. 

Even if the forecast accuracy is terrible, it could still be characterized as a good forecast if no 

other forecasting methods are able to perform better. Thus, bad accuracy may still imply a 

decent performance relative to other methods. A common approach to account for this is to 

compare the survey`s forecast to a benchmark model. In this paper I will use a simple random 

walk model (RW) as a benchmark. According to this model the forecast for this quarter`s 

change in inflation for a given horizon will simply be the change experienced in last quarter for  

the same horizon: 

𝑅𝑊: 𝐹𝑡,𝑥 = 𝐴𝑡−1,𝑥 

where Ft is the forecast for the current quarter at time t for horizon x, and At-1 is the actual value 

from last quarter for horizon x. Since the actual data is the percentage change in inflation the 

random walk model will represent a “same change model”, i.e. the forecast will be equal to the 

change in last quarter (in contrast to a “no change model”, where the forecast will represent no 

change in the level data). 

Previous studies have proven that this model performs reasonably well when forecasting 

inflation, as it even outperforms other more sophisticated time series models for some inflation 

measures (Ang et al. 2007; Atkeson and Ohanian 2001). It therefore seems as a legitimate 

choice to use this as a comparison to the survey forecasts. 

An expected advantage for this model is that it will be good at predicting turning points. While 

forecasters will have to analyse the economic situation based on numerous variables in order to 

precisely predict and time the actual turning point, the random walk model will automatically 

predict the turning point one quarter after it happened since it only bases it prediction on the first 

lagged value. On the other hand, the model will perform badly if the inflation rate has abrupt 

changes between high and low, as the model then will be unsynchronized with the actual values. 
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2.2 Statistical tests 

2.2.1 Forecast comparison regression 

In order to statistically distinguish one forecasting model from another, one can perform a 

forecast comparison regression. The regression line in this situation will be: 

𝜋𝑡,𝑥 = 𝛽 ∙ 𝑓𝑡,𝑥
𝑆𝑃𝐹 + (1 − 𝛽) ∙ 𝑓𝑡,𝑥

𝑅𝑊 + 𝜀𝑡,𝑥 

where 𝑓𝑡,𝑥
𝑆𝑃𝐹is the forecast of 𝜋𝑡,𝑥 from the SPF database, 𝑓𝑡,𝑥

𝑅𝑊 is the forecast from the naive 

benchmark model, and 𝜀𝑡,𝑥 denotes the forecast error associated with the combined forecast. 

Further, t denotes time and x represent the forecast horizon. If β=0, then forecasts from the SPF 

database add nothing to the forecasts from the benchmark model, and we thus conclude that the 

naive model outperforms the SPF model. If β=1, then forecasts from the random walk model 

add nothing to the forecasts from the survey, and we then conclude that the SPF forecasts 

outperform the benchmark model. In order to indicate better performance by the SPF forecasts, I 

will test if the null of β equal to zero is rejected and thus conclude that β is significantly different 

from zero. This is in line with both Stock and Watson (1999) and Ang et al. (2007). 

To my knowledge it is not possible to restrict coefficients when performing a Newey-West 

regression in Stata. Thus, I had to rearrange the regression line in order to perform the analysis:  

�𝜋𝑡,𝑥 − 𝑓𝑡,𝑥
𝑅𝑊� = 𝛽 ∙ (𝑓𝑡,𝑥

𝑆𝑃𝐹 − 𝑓𝑡,𝑥
𝑅𝑊) +  𝜀𝑡,𝑥 

2.2.2 Bias 

A bias test confirms if the forecast errors are centered on the correct value or if they 

systematically diverge from the real values of inflation. In other words: it tests if the forecasters 

systematically over- or underestimate inflation. A common approach to conduct such a test is to 

do a simple regression on the following equation: 

𝐴𝑡 =  𝛼 +  𝛽𝐹𝑡 + 𝜀𝑡 
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where At are the actual values of the inflation variable, α is the constant term, Ft is the forecast 

in question and εt the corresponding standard error. Subsequently, the null hypothesis of no bias 

is tested, i.e. if α=0 and β=1 holds. If these conditions are not rejected, it suggests an unbiased 

forecast. It has been shown, however, that the conditions α= 0 and ß = 1  is not necessary for F 

to be an unbiased forecast of A. Holden and Peel (1990) show that by regressing forecast errors 

on a constant and test whether the constant can be restricted to zero, we get a condition that is 

both necessary and sufficient for unbiasedness. This method is also used by Mankiw et al. 

(2003), who re-arrange the original regression line above to the following: 

𝐴𝑡 − 𝐹𝑡  =  𝛼 + 𝜀𝑡 

Thus, the necessary condition in order for a forecast to be unbiased is the null hypothesis of 

α=0. If the null hypothesis is rejected the individual will be characterized as biased. 
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3. Data 

This section will provide a brief introduction of the dataset from the SPF, followed by a section 

explaining the autocorrelation and heteroscedasticity in the data. Finally, a presentation of the 

actual data (i.e. the GDP variable) will be given. 

3.1 Descriptive statistics 

Due to the volatility in the GDP variable it is inevitable that some periods have been more 

turbulent than others when it comes to change rates in the inflation variable. This also leads to 

highly different standard deviations in the different time periods. The standard deviation has a 

useful purpose when assessing forecast accuracy, because it can be interpreted as a direct 

measure for the difficulty of forecasting in each period (McNees 1992). It will then be possible 

to compare forecasts given in different periods with different degrees of difficulty. The figures 

below illustrate the development of the standard deviation of inflation change over time for 

different forecast horizons. Figure 1 shows the standard deviation of the one-year-ahead 

forecasts from the SPF across time. From this figure, one can see that the inflation forecasts 

have become less erratic and volatile over time. Figure 2 shows the standard deviation for the 

real change in inflation for the four different horizons. It illustrates that the 1970s and 1980s 

were the most difficult periods to forecast in. After this there was a sharp decrease in the 

standard deviation, and inflation in the 1990s and 2000s ought to have been much easier to 

predict. For the two shortest horizons the 1980s have been most difficult to predict. 

The number of participants who have responded to the survey have varied over its life time, as 

can be seen from figure 3. It also highlights the dwindling participation up to the closure of the 

survey, before the Federal Reserve Bank of Philadelphia took over responsibility for the 

execution. In the beginning the participation was very high, with a maximum of over 60 

participants. After 1990, the number has become lower and it seems as the participation 

stabilized around the total mean of about 35. 
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Figure 1 and figure 2: Average standard deviation for the four quarter forecast from the SPF 

(left) and standard deviation per decade for real inflation change for all forecast horizons (right). 

 

 
Figure 3: The number of participants in the survey across time. 

When doing an analysis on individuals it is best to have long uninterrupted series of responses to 

examine if the forecasters are able make accurate forecasts over time. It is possible for everyone 

to have a lucky guess a quarter or two in a row, but a forecaster who gives accurate forecasts 

quarter after quarter for a long time has much more credibility and a higher justification to be 

called accurate. Panel A in table 1 shows the five longest consecutive forecasting series, who 

they belong to and when it happened, while panel B gives some information on how many series 
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which fall into different bins of varying length. As we can see, the longest series of consecutive 

responses is 49 quarters given from 1990q1 until 2002q2. Next individual has given 40 

consecutive responses in the 2000`s, followed by two forecasters in the 1980`s and 1990`s with 

36 consecutive responses. These will be well suited for analysis in the following sections. Panel 

B gives important information on how the situation is further down on this ranking. It shows, as 

we have seen in panel A, two series which are longer or equal to 40 quarters. Further, we have 

eight series which fall into the bin consisting of series between 30 and 39 responses, 24 series 

ranging from 20-29 responses and 127 series with length from 10-19 quarters. In other words, 

one can observe several individuals with an adequate amount of consecutive responses to test 

accuracy over time. 

Table 1: The five longest consecutive series of responses. 

 

3.2 Autocorrelation and heteroscedasticity 

An inevitable characteristic of a survey like the SPF is the issue of overlapping observations 

(Croushore 2006; Grant and Thomas 1999). When testing forecasts over an equal or longer 

horizon than the sampling frequency of the data (e.g. one-year-ahead forecasts while the 

sampling frequency is quarterly) one need to take into consideration that a shock affects several 

of the underlying quarters. If an inflation shock affects actual data in 2010q1, this means that 

forecast errors from 2009q1 up until 2010q1 are all correlated.  

Panel A: Panel B:
ID Maxrun From To
65 49 1990q1 2002q2 >39 2
510 40 2001q4 2011q4 30-39 8
70 36 1980q3 1989q3 20-29 24
30 36 1981q2 1990q2 10-19 127
433 34 1990q4 1999q2 1-9 1244

Number of responses

Note: Panel A shows the longest series of consecutive responses  
(maxrun) given by a forecaster. Panel B shows number of 
consecutive series that fall into different bins of varying length.
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Autocorrelation in the errors is a violation on the assumptions behind regular ordinary least 

square (OLS) regressions, making results from this kind of analysis spurious (Granger and 

Newbold 1974). OLS assumes that the errors in the regression are uncorrelated, normally 

distributed and have a constant variance (homoscedasticity). The last assumption is also most 

likely violated in our data set, because some individuals are more accurate than others and 

because some periods are harder to predict than others. This implies heteroscedasticity in our 

data (in addition to autocorrelation).  

A solution to this problem, taken from Croushore (2006), is to adjust the covariance matrix as 

shown by Newey and West (1987) and thus guarantee a positive definite covariance matrix. This 

will overcome the problem of heteroscedasticity and autocorrelation in the errors in the dataset. 

Practically, this will imply running a Newey-West regression with heteroscedasticity and 

autocorrelation consistent (HAC) standard errors when doing the forecast comparison regression 

and bias test mentioned in section 2.2. This method will prevent any problems with 

autocorrelation and heteroscedasticity in the error terms of our data.7 

3.3 Actual data 

This paper will assess the predictive accuracy of inflation forecasts from individual forecasters. 

Inflation is known as an increase in the general price level for goods and services within a 

country over a certain time span. There are a number of diverse variables, which differs both in 

calculation method and content, which strive to describe the same phenomenon. A suitable 

question would then be which variable should one use?  

In the SPF survey they have forecasts for two main inflation variables, namely the CPI index 

and the GDP price index.8 Which variable to choose depends on the purpose of the study. 

Consumers would be best off using the CPI, as that measure gives the increase in price of a 

fixed basket of consumer goods. The GDP deflator, on the other hand, is more dynamic and can 
                                                 

7 Since our data have a quarterly frequency I will use a lag of four in the Newey-West regressions. 
8 Prior to 1996, GDP implicit deflator. Prior to 1992, GNP deflator (Federal Reserve Bank of Philadelphia 2011). 
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be used to show new expenditure patterns as it is based on all domestically produced goods in 

the country. I have chosen to use the GDP deflator as the inflation variable. 

When using the GDP deflator one should be aware of that the variable undergoes severe 

revisions from the first initial calculations. This makes it hard to know which revision one is 

supposed to use as actual data. Studies have pointed out results demonstrating significant 

differences in accuracy between using the initial or revised data on GDP (Croushore and Stark 

2001; Stark and Croushore 2002). They found that even though data revisions can have a large 

effect on its accuracy, it tend to not alter the relative accuracy between the survey and the 

benchmark projections (Stark 2010). McNees (1992) also concluded that forecasts are much 

more accurate when compared to preliminary data than they are compared to final revised data. 

He argues that if the aim is to measure how close forecasters come to what actually happened it 

is clear revised data is a better estimate of reality. This line of argumentation is logical; if 

forecasters cannot predict what actual revised inflation will be, but are only able to predict 

preliminary inflation, their forecasts are not much use for anyone. With this in mind, I will use 

the final revised data of the GDP deflator as actual values. 

This choice may have some negative effects, considered that the random walk model is based on 

the final revised version of the GDP price index. It could be argued that this gives an advantage 

compared to the forecasters who only have knowledge of a preliminary version of the inflation 

rate when they make their forecasts. Thus, my use of revised data may bias the results against 

the individual forecasters. 

3.3.1 Historical development 

In order to explain differences in forecast accuracy over time it is important to see how the 

inflation variable has developed over the time span of the survey. Over the past 40 years the real 

GDP deflator has had a striking linear growth, as it started at a level of 20 in 1968 and now has 

almost reached a level of 120 (see figure 4). By first sight, it seems as though it should cause no 

problems for forecasters to predict a simple linear trend. On the other hand, if we look at the 

four quarter ahead actual growth, it becomes more evident that forecasters need some skills in 
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order to predict the actual change (which is what I am measuring in this paper). This highly 

inflationary period can mostly be explained by politics. In the late 1960s the U.S. was in a 

recession and it was an election year. To keep a low unemployment level President Nixon 

pressured the Federal Reserve to keep low interest rates, with the purpose of providing the 

public with a sense of recovery from the recession. This, however, turned out to be a short-lived 

satisfaction. In 1972-73 inflation started to rise sharply and it did not come under control until 

Paul Volcker became chairman of the Fed and introduced a tight monetary policy. This highly 

disturbing period has also led to the Federal Reserve keeping a more cautious and closer look at 

the inflation. Later, the annual change in inflation has been stable in the low single digits, which 

leads to a more predictable variable. 

Figure 4 also depicts all U.S. recessions during the time span of the survey. According to the 

National Bureau of Economic Research (2010) there have occurred seven recessions, with four 

of them happening in the first 15 years of the survey. 

 
Figure 4: Development for the GDP price index and U.S. recessions. 
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4. The Survey of Professional Forecasters 

This section will contain information regarding the SPF database.9 I will first do an introduction 

and a brief summary of the database, before I provide a section concerning the timing of the 

survey explaining available information at the time forecasts were given. Finally, I will present 

our work relating to problems and caveats with the database. 

4.1 Introduction 

The SPF is a quarterly survey started in the fourth quarter of 1968, thus making it the oldest 

quarterly survey of macroeconomic forecasts in the U.S. It was started as a joint venture by the 

American Statistical Association (ASA) and the National Bureau of Economic Research 

(NBER), which led to its original name: the ASA-NBER economic outlook survey. Among the 

variables to be forecasted initially was the change in the GNP deflator, and horizons for 1-4 

quarters ahead. They collected forecasts of the GNP deflator from 1968 to 1991, the GDP 

deflator from 1992 to 1995, and the GDP price index since 1996 (Federal Reserve Bank of 

Philadelphia 2011). This change in variable causes no severe problems, since the GNP deflator, 

GDP deflator and GDP price index behave quite similarly and there are no apparent breaks in 

the forecast series to be seen in either of the years where the change took place (Croushore 

2006). The objectives of the survey were first stated in Mincer and Zarnowitz (1969), and later 

the performance in the first 22 years of operation was assessed in Zarnowitz and Braun (1993). 

The survey was very popular in the early years with over 50 participants each quarter. However, 

as time passed the participation declined so much that it was decided to end the survey in first 

quarter of 1990. Later the same year it was decided that the survey should be resumed, now 

under control of the Federal Reserve Bank of Philadelphia. Measures were taken to ensure a 

                                                 

9 More info and data can be found online at http://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-

forecasters/ 
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higher level of participants and the timing of mailing and collecting the survey was improved in 

order to make them more consistent over time. 

The respondents are, as the name of the survey implies, professional forecasters. This means the 

receivers of the survey have forecasting as a part of their job. This includes professors, bankers, 

consultants and other who have continuous interaction with macroeconomic data in their daily 

job. Participants are held anonymous in order to encourage people to provide their best forecasts 

without worrying about potential forecast errors or forecasts which may contradict with their 

jobs position (Croushore 1993). The survey is mailed to participants the day after the 

government release of quarterly data NIPA accounts. It asks for point forecasts for many 

different variables and time horizons. 

4.2 Timing 

When comparing different series of forecasts it is imperative to take into consideration the 

timing of the survey, to ensure that all parties have the same starting point and the same 

information set when predicting. After the Federal Reserve of Philadelphia took over the survey 

in 1990q2 they made sure to maintain a consistent timing of the conduction of the survey 

(Federal Reserve Bank of Philadelphia 2011).10 The survey is mailed to all participants just after 

the release of the NIPA advance report11, which happens in the first month of the quarter. 

Included in the survey is a report on recent historical values of different variables from different 

sources, in order to make sure participants produce their forecasts on the same basis. The survey 

is due in the second or third week of the middle month each quarter. This implies that the 

participants can take advantage of information in the variables in question up until this time. 

There are no official data released during these weeks, however, so the last information the 

participants have knowledge of is from the preceding quarter. The results of the survey are 

                                                 

10 Their first survey was officially in 1990q2. However, this survey was conducted ‘after the fact’ because they had not yet 

received all the information from the NBER/ASA that they needed to conduct it in real time (Stark 2010). 
11 This contains preliminary results on the GDP deflator from the current quarter. 
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released in the middle month, well before the next survey is sent to the participants. An example 

may enlighten the matter further: just after the advanced report is released in 2010q1 (January) 

the survey for the same quarter is sent to its participants. They now have knowledge to all 

historic values of the GDP price index up until 2009q4. They provide forecasts for 2010q1, 

2010q2, 2010q3, 2010q4 and 2011q1. The one-year-ahead forecast comes as a result of their 

forecast of 2011q1 relative to 2010q1. As Croushore (2006) points out, even though this 

represents a four quarter period the end of the forecast horizon (2011q1) actually is five quarters 

after their latest known observation of the GDP price index (2009q4). The table below 

highlights the most important information regarding the timing of the survey.   

When it comes to the timing before the Federal Reserve Bank of Philadelphia took over the 

survey in the second quarter of 1990 there is no certain documentation (Croushore 2006). 

However, according to Stark (2010) a recent analysis of the timing when the ASA-NBER was in 

charge of the survey suggest that the schedule was very similar to the one we can observe now 

at the Federal Reserve Bank of Philadelphia.12 

                                                 

12 They compared the latest-available historical observation in the survey’s data set with the values as they appear in the 

Philadelphia Fed’s real-time data set and found a close correspondence, particularly since 1985. 
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Table 2: Timing of the Survey of Professional Forecasters, from 1990q3 to present. 

Source: Federal Reserve Bank of Philadelphia (2011) 

 

4.3 Problems with the database 

This section will give a presentation of potential problems and caveats one should be aware of 

when working with the SPF database.13 It will also contain some proposed solutions which can 

be implemented to remove or minimize the problems at hand. This analysis is only conducted 

based on the one-year-ahead forecast horizon. 

4.3.1 Irregular forecasters 

An inevitable problem with individual data is the irregularity in respondents` participation. 

Since the survey is based on volunteer participation it is up to each individual to answer the 

survey or not. It is therefore unavoidable that most respondents at some time will give less 

priority to the survey if they are preoccupied with work or other business. This problem is also 

                                                 

13 This section is the result of our work as research assistants for the crisis, restructuring and growth project. It was performed in 

cooperation with Karen Oftedal Eikill, and she therefore deserves some of the credit. 
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present in this dataset, where one often find several gaps in an individual’s forecast series. This 

poses a challenge because it limits the number of long individual forecast series which can be 

used for analysis. The point with individual accuracy is to study if some individuals perform 

consistently accurate over time. Thus, it is not interesting to do analysis on a forecast series only 

a few quarters long. It will also make it harder to do statistical analysis as it may require longer 

data series to gain enough information. 

The above-mentioned problem is also pointed out in most previous articles dealing with 

individual data in the SPF database. In Zarnowitz (1985, 1984)  and Keane and Runkle (1990) 

they remove individuals which have less than 10, 12 and 20 responses (respectively) from their 

dataset. This ensures that the problem becomes less prominent, and it removes the sporadic 

forecasters who give us no useful information. In order to see how these changes will affect the 

database, table 3 shows some descriptive statistics regarding the participation in the survey. 

Panel A shows the number of surveys per respondent, which is equal to the number of quarters 

the forecasters have responded to the survey. As we can see the average number of surveys 

increase as the irregular forecasters are removed, providing a dataset more eligible for analysis. 

The standard deviation of surveys per respondent decreases, which is logical since individuals 

with few responses is removed. The highest number of surveys an individual responded to was 

123 (but this does not imply 123 consecutive responses). Panel B shows the number of 

respondents per survey. When eliminating irregular forecasters the total number of unique 

forecasters decreases, along with the average number of forecasters per survey. This basically 

means that data on fewer respondents are included than would have been if the whole dataset 

were used.  The changes to the data are not very large which suggests that removing irregular 

forecasters do not alter the database significantly. In my further analysis in this paper I will use 

data where those individuals with less than 12 responses are removed. 
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The descriptive statistics of key variables in the 

survey also changes when respondents are 

dropped. Table 4 shows the alteration of these 

variables when individuals with less than 12 

responses are dropped. The mean of the forecasts 

for pgdp2 and pgdp6 both increase somewhat, 

from 138.54 to 138.93 for pgdp2 and from 

144.21 to 144.59 for pgdp6. Thus, the one- year 

ahead forecasts also increases, from 3.68 percent to 3.71 percent. The standard deviations also 

increase slightly, while the minimum and maximum values are the exact same. All in all, the 

changes in the database due to dropped responses are minor and should have no impact on the 

coming analysis.  

Figure 5 shows a plot of the number of dropped individuals against the time variable. The figure 

illustrates that there are irregular forecasters over the whole time period, not only confined to a 

specific part of the survey. The maximum number of dropped individuals in one quarter is 16, 

which was in 1970q4. After year 2000 there have not been more than seven individuals with less 

than 12 responses per quarter, which could imply that forecasters have become more regular in 

recent times. Figure 6 shows how the median one-year-ahead forecast have changed after the 

removal of irregular forecasters. As one can see, the differences are small with the largest being 

0.3 percent in 1990q4. 

Table 3: Selected distributional statistics 
over whole sample and two sub-samples. 

 

Table 4: Statistics for key variables before and after dropping irregular forecasters. 

 

Responses All >12 >20
Obs deleted - 652 1336
Total obs 6568 5916 5232

Panel A:  Number of surveys per individual
Total surveys 173 173 173
Mean 41.4 45.2 49.1
Std. Dev. 26.6 25.3 24.4
Min 1 12 20
Max 123 123 123

Panel B:  Number of individuals per survey
Total respondents 313 176 131
Mean 42.2 41.8 41.3
Std. Dev 13.4 13.3 13.2
Min 9 9 9
Max 83 83 83
Note: Table shows descriptive statistics for different 
subsamples. 

Sample
Statistic pgdp2 pgdp6 forecast 1yr pgdp2 pgdp6 forecast 1yr
Observations 6563 6134 6133 5912 5545 5544
Mean 138.54 144.21 3.68 138.93 144.59 3.71
Std 32.03 35.97 2.16 32.53 36.41 2.17
Min 104.41 105.7 -4.57 104.41 105.7 -4.57
Max 235 247 31.14 235 247 31.14

>12 responsesAll

Note: table shows descriptive statistics for key variables, before and after 
removing irregular forecasters (i.e. with less than 12 responses).
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Figure 5 and figure 6: Number of dropped respondents per quarter (left) and the difference in 

the median inflation forecast before and after removal of irregular forecasters (right). 

4.3.2 Missing values 

There are some problems with missing values in SPF database. In this context, missing values is 

not connected to the problem mentioned above with individuals not responding to the survey, 

but rather when individuals decide not to respond to all questions in the survey. This problem 

becomes particularly prominent when looking at the average value of the one-year-ahead 

forecast horizon. According to our inspection, there are five quarters which have no values at 

all: 1969q1-q3, 1970q1 and 1974q3. It should be noted that this issue does not concern the 

smaller forecast horizons. The reason for these missing values has to be due to missing values 

for variables pgdp2 and/or pgdp6.14 However, examinations of the data material have shown 

that it is missing values for the pgdp6 variable that is causing the problem. There are two 

plausible solutions on this problem. First, one can start using the data after the last quarter with 

missing values for the four quarter forecast, i.e. drop all observations before 1974q4. This would 

ensure observations in all quarters for this forecast horizon and thus not bias our results. Another 

advantage with this method is that it demands very little effort to drop the unwanted 

observations, in contrast to other methods which may require more calculations. It should be 

                                                 

14 See calculation of one-year-ahead forecast in section 2. 
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noted, however, that this method may result in valuable information being lost. By removing 

almost 20 quarters with observations, one may get different answers and conclusions than 

before, especially when we take into consideration the volatility of the inflation variable during 

those years. Second, one can fill in values for the pgdp6 variable based on the other values the 

individuals reported on the respective surveys. As mentioned above, some forecasters chose to 

leave out some information in the surveys and as it turns out it was often only the pgdp6 value 

which was left out. One possible solution is to do a linear projection based on the other variables 

(pgdp2-pgdp5). A possible equation could be: 

𝑝𝑔𝑑𝑝6 =  𝑝𝑔𝑑𝑝5 ∗  ��
𝑝𝑔𝑑𝑝2
𝑝𝑔𝑑𝑝1

� + �
𝑝𝑔𝑑𝑝3
𝑝𝑔𝑑𝑝2

� + �
𝑝𝑔𝑑𝑝4
𝑝𝑔𝑑𝑝3

� + �
𝑝𝑔𝑑𝑝5
𝑝𝑔𝑑𝑝4

�� /4 

This method generates a value for pgdp6 by projecting pgdp5 based on the average growth rate 

in the other variables. This method entails filling in 396 (340) new values of pgdp6 when 

keeping (removing) individuals with less than 12 responses. As we can see from table 5, neither 

method change the basic statistics of the one-year-ahead forecast or pgdp6 much. It also fills in 

values for pgdp6 in all the quarters which previously had no observations. It therefore seems as 

a reasonable method to use. 

 

Another method for inspecting if these changes alter the database too much is to compare the 

median value in the individual database with the median database found on the SPF website. 

Initially, these two should be, and are, perfectly equal. After filling in values and dropping 

respondents, however, there are some differences to be seen. Figure 7 shows the difference 

between the aforementioned series when values are filled in but before individuals with less than 

twelve responses are removed. It shows minor errors, with the biggest ones being just above 0.1 

percent and the errors being dispersed over the whole time span. Figure 8 shows the same as 

figure 7, only now we have removed the irregular forecasters. The errors are now larger and 

more frequent, with the largest errors at about 0.3 percent. Even though we see a worsening 

picture, it cannot be said to be all that bad. It seems as though filling in values by linear 

interpolation does not alter the characteristics of the database in a too large extent. Since I am 
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doing analysis on multiple horizons, I have chosen not to implement any of the above-

mentioned suggestions. 

 

 

Figure 7 and figure 8: Difference between the median one-year-ahead forecast from the 

individual database and the median database from the SPF website, before (left) and after 

(right) removing individuals with less than 12 responses. 

4.3.3 Reallocation of ID numbers 

Another problem with the database relates to the identification (ID) numbers, given to each 

respondent in order to secure anonymity of that person. Unfortunately, as the documentation 

paper from Federal Reserve Bank of Philadelphia (2011) suggests, there could be some 

problems with the allocation of these ID numbers. This entails some negative consequences and 

one should use some caution when interpreting the identifiers associated with each respondent. 

Table 5: Basic statistics before (top) and after (bottom) removing individuals with less than 
12 responses. 
 

 

 

Note: Variables ending with new (or ~w) represents new variables after filling in values with above-
mentioned procedure. 
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First, it has been discovered occurrences where the same ID number could represent different 

individuals over the time span of the dataset. In some occurrences a respondent drops out and 

then reenters several periods later, suggesting that a new individual may have been given an 

already used number. This is only a problem in the data from when the NBER-ASA was in 

charge of the survey, i.e. from 1968q4-1990q1. The lack of hard-copy historical records 

prevents anyone from looking into this problem, thus making it hard to come up with any 

solutions to the problem. It is guaranteed that this is not a problem after the Federal Reserve 

Bank of Philadelphia took over the survey in 1990q2. Second, a new problem arose when the 

Federal Reserve Bank of Philadelphia took over the survey and introduced the industry variable. 

The question was, if a respondent changes jobs (i.e. the industry variable changes) should the ID 

number follow the respondent or the initial firm? Being aware of the issue, the Federal Reserve 

Bank of Philadelphia decided on a guideline for how to deal with it. If a forecast seems more 

associated with the firm than the individual, the ID number stays with the firm and the 

respondent gets a new ID (and vice versa). Unfortunately, they do not give any information on 

which ID’s this concern. When analysing individuals this could be a problem if the 

identification number is more connected to a firm than to an individual, as tests on ID’s in 

reality will concern the associated firm and not necessarily one specific individual. 

Even though there is a vast literature concerning the SPF database, there is to our knowledge not 

anyone using individual data who discusses the above-mentioned problems.15 One reason for 

this is that they mostly use the old data from NBER-ASA and hence were not aware of the 

problem. Other researchers use the mean or median forecasts in their studies, thus ignoring the 

problems connected with individuals. There has been done little research on individual data in 

the recent years, which also implies a lack of an up-to-date solution to the abovementioned 

problem.  

One possible solution to this problem could be to divide individuals where large gaps in 

responses occur into two or more ID`s. The problem with this solution is that the Federal 

                                                 

15 See for example Zarnowitz (1984), Zarnowitz and Braun (1993) and Keane and Runkle (1990) 
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Reserve Bank of Philadelphia is not absolutely sure if ID`s really were re-used, they only know 

it could be a problem. A pause in responses from an individual does not necessarily mean it is a 

new person; it could be an individual who deliberately decided to stop responding to the survey 

for a time, and then started again at a later stage. Nevertheless, if the gap is big enough it could 

be argued that the respondent would have changed some over the years anyhow and calling 

her/him a new person would not be a terribly wrong act. When deciding how large the gap 

should be before the ID is divided up, we should also take into consideration that some 

respondents can be absent due to natural causes such as child birth and sick leave. Another 

thinkable scenario is where an individual changed jobs, and thus could not be called a 

“professional forecaster” anymore before he/she reentered the forecasting business at a later 

stage. The gap should therefore be large enough to consider such causes, e.g. 5 years (or 20 

quarters) or more. 

In table 6 we show some statistics concerning gaps in individuals’ forecasting series. On 

average, when all forecasters are included, the average gap in a forecaster’s series is 0.82 

quarters with a corresponding standard deviation of 4.21. The largest gap is 73 quarters, which 

constitutes roughly 18 years. Based on this, it seems highly probable that reallocation is present. 

The table also points out that there are more forecasters without a gap in their response than 

there are forecasters with gaps (see column 1: “obs”). If only those with gaps are included the 

average size of the gap is 3.61 quarters with a high corresponding standard deviation of 8.24. 

One of the solutions mentioned above in section 4.3.2 was to start with data from 1974q4 in 

order to deal with missing values. This solution would also do some good when it comes to gaps 

in the forecasting series. As the last row illustrates, the average size on the gap and the 

corresponding standard deviation goes down when we start at a later time. This suggests that 

most of the gaps are positioned in the early stages of the survey. Table 6 also gives the same 

statistics after we have removed irregular forecasters. This measure will improve the gap 

statistics for all of the different scenarios included in the table, which put emphasis on the 

correctness of implementing this measure. 
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Table 6: Gap statistics before and after removing irregular forecasters. 

 

Going more in detail, it could be interesting to see how many individuals who in fact have large 

gaps in their forecasting series. Table 7 illustrates such numbers on gaps from five to twenty 

years, before and after we have corrected for irregular forecasters. It illustrates that fifty-eight 

individuals have a gap larger than five years, twenty-nine with gaps larger than ten year, four 

with a larger gap than fifteen years and none with gaps larger than twenty years. After removing 

irregular individuals, the numbers become better. There are forty individuals with a gap larger 

than five years, sixteen with a gap larger than ten years and none with larger gaps. Here we can 

also see that removing irregular forecasters improve some of the faults in the database.16 

We also want to examine if the gaps are more 

prominent in a certain time period, and hence 

expose if there is a pattern in their occurrences. 

By plotting the number of gaps larger than five 

and ten years, as seen in figure 9 and figure 10, 

we can see that most of the gaps are mainly 

located in the beginning of the survey. This 

coincides with the finding in table 6. In 

1970q3 there are five individuals with a gap 

larger than five years, which is the highest number of individuals in one quarter. Later there are 
                                                 

16 We have to be aware of the fact that there could be individuals with more than one gap. After a closer look, however, we find 

that there are no individuals who have more than one gap larger than five years (and thus no one with even larger gaps). 

A: Before removing irregulars B: After removing irregulars
Obs Mean Std Max Obs Mean Std Max

All 6255 0.82 4.21 73 5740 0.66 3.37 51
With gap 1421 3.61 8.24 73 1229 3.08 6.76 51
No gap 4834 0.00 0.00 0 4511 0.00 0.00 0
From 1974q4 4844 0.48 1.95 46 4477 0.44 1.91 46
Note: Table shows statistics concerning gaps in the individuals` forecasting 
series, before and after removing irregular forecasters (i.e. less than 12 
responses).

Table 7: Number of individuals with large gaps

 

 

Observations All >12 >12
Gap\Time span >1968q4 >1968q4 >1974q3

>5 yr 58 40 21
>10 yr 29 16 2
>15 yr 4 0 0
>20 yr 0 0 0

Note: table shows the number of 
individuals with gaps larger than a given 
number, for different sub samples.
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only a couple of individuals just before 1995 with large gaps. This tells us that the problem is 

mostly present during the NBER-ASA period of the survey as only three gaps come from the 

Federal Reserve Bank of Philadelphia period. For gaps longer than ten years, all except two are 

in the beginning of the survey; just before 1975 and 1995. A possible solution to the problem 

could then be to start with data from 1974q4. If we look at this subsample, there are only 

twenty-one observations with gaps longer than five years, and only two with gaps longer than 

ten years (see table 5). In other words, it reduces the problem to a great extent. 

 

Figure 9 and figure 10: Number of individuals with gaps larger than five years (left) and ten 

years (right) in their forecasting series. 

 

4.3.4 Changing base year 

When working with level data from the SPF database one should be aware of the fact that there 

are multiple changes in base year for several variables. Every fifth year, when there are 

benchmark revisions to the NIPA variables, the base year might change in addition to the data 

being revised. Since the forecasted levels in the data set have not been rescaled after the base 

year changes, the levels in the SPF dataset use the base year which was in effect when the 

questionnaire was sent to the forecasters. For the GDP deflator variable there have been eight 

changes in base year: 1976q1, 1986q1, 1992q1, 1996q1, 1999q4 and 2004q1 and 2005q1 

(Federal Reserve Bank of Philadelphia 2011). They are listed in table 8 below, and shown in 

figure 11. 
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When working with percentage changes, the base 

year revisions do not have to be a problem, because 

the effect on the inflation rate is likely to be minor 

(Diebold et al. 1997; Clements 2006a). But, if we 

want to compare the quarterly levels of pgdp with 

the real data, a problem might occur. The survey 

may ask forecasters for predictions where the 

predicted horizon cross the time for the next base 

year change. One way to solve this could be to 

exclude all forecasts with horizons which extend 

beyond the date of systematic data revisions from 

the data (Keane and Runkle 1990). One could also 

use vintage data when comparing (Clements 

2006b). Vintage data will always have the same 

base year as the forecasts, as vintage data are the data which were available at the time the 

forecast was made. It is also interesting to see if the forecasters managed to keep track of the 

base year changes in their forecasts. One way to inspect this is to plot the variable in question 

over time and see if there are any abnormalities. According to figure 11, which demonstrates the 

changing base year in the pgdp2 and pgdp6 variables, it seems reasonable to believe that the 

individuals were able to take into consideration the changes in base year when forecasting.  

Table 8: Base year changes for NIPA 
variables, including the GDP deflator 
variable. 
Source: Federal Reserve Bank of 
Philadelphia (2011) 

 

Range of Surveys Base Year 

1968:Q4 to 1975:Q4 1958
1976:Q1 to 1985:Q4 1972
1986:Q1 to 1991:Q4 1982
1992:Q1 to 1995:Q42 1987
1996:Q1 to 1999:Q33 1992
1999:Q4 to 2003:Q4 1996
2004:Q1 to 2009:Q2 2000
2009:Q3 to present 2005

Note: In the survey of 1992q1, the surveys 
measure of output swithces from GNP to GDP. In 
the survey of 1996q1, the surveys measure of 
NIPA prices and quantities switches to chain-
weighted measures.
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Figure 11: Base year changes for the pgdp2 and pgdp6 variables. 

4.3.5 Outliers and consistency of forecasts 

A potential problem with most databases is biased results due to corrupt data. Thus, it is 

important that data used in the analysis are reliable and consistent. It is possible that errors from 

the survey questionnaires are transferred into the database (Giordani and Söderlind 2003). This 

section will discuss the possible event of extreme values and the consistency of the forecasts.  

Extreme values (“outliers”) can give biased results, which makes it important to locate them in 

order to assess their importance for our analysis. Figure 11 shows pgdp2 and pgdp6 over time, 

and gives a visual of any potentially problematic outliers. Pgdp2 seem to be relatively 

consistent, which makes sense since this is a “forecast” for the inflation value in the current 

quarter. Pgdp6, on the other hand, seems to have some potenital problematic outliers before the 

second base year change with the most serious being made in 1978q3. In the same quarter one 

can find similar outliers in pgdp4 and pgdp5 (not shown here), which could imply a forecaster 

who has made a mistake or made a forecast that deviates from the consensus. After some 

research, it seems as though these outliers are a result of a respondent giving an optimistic 

forecast (see table 9). This cannot be seen as an outlier beacause it seems as this was indeed the 

forecaster`s beliefs. Since this was the largest outlier, according to figure 11, it is reasonable to 
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believe that other potential outliers are just an individual making a slightly more optimistic 

forecast than the consensus. 

Table 9: "Outliers" from ID 47. 

 

If the forecasters are consistent, then the quarterly predicted pgdp levels should not be too 

different from the predicted annual levels (Smith and Yetman 2010). In the SPF database there 

seems to be a lack of consistency between the one-year-ahead forecasted inflation (pgdp6 when 

standing in quarter 1 or quarter 4, respectively) and the annual-average forecasts for the current 

year (pgdpa) or next year (pgdpb). This can be examined by plotting the abovementioned 

variables against each other. Figure 13 shows the first of these plots. It shows the difference 

between the forecasted inflation level one year ahead and the forecasted annual-average inflation 

level for the current year, which should be close to zero. As we can see this is not the case, 

especially in the early 80`s, as the difference between the two variables varies from -3 percent to 

+10 percent. After the Federal Reserve Bank of Philadelphia took over the survey in the early 

1990s, the problem almost ceases to exist. This could imply that there was better control over 

what was actually forecasted. The same comparison can be done for inflation forecasts for next 

year and the one-year-ahead forecast (i.e. pgdp6 if the forecaster is in the fourth quarter), and is 

shown in figure 12. The results are similar to what we have seen above, except for the fact that 

the errors are smaller. Nevertheless, we see a distinct improvement in the difference between the 

two variables over time. Another point worth mentioning is that the errors are more centered on 

zero than in figure 13. 

Variable pgdp1 pgdp2 pgdp3 pgdp4 pgdp5 pgdp6
Time 1978q2 1978q3 1978q4 1979q1 1979q2 1979q3
ID=47 150.7 160.9 172.5 185 197.7 211
Mean 150.7 153.7 156.8 160.1 163.1 165.8
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Figure 12 and figure 13: Consistency in forecasts of one-year-ahead inflation and annual 
avareage for current year (left) and next year (right). 

One possible solution to this problem is to exclude values which are too extreme from the 

sample, e.g. all values that differs with more than a given percentage point (Smith and Yetman 

2010). This would make the dataset more robust and less exposed to outliers. One problem, 

however, is that we can only perform this consistency check from when the survey started to 

include annual average forecasts in 1981q3. There is no way of checking the consistency for the 

earlier years, but according to the results in figure 12 and 13 it is reasonable to suspect that they 

are not too good. Only removing extreme values from the 80`s will not solve the problem, which 

make this solution not desirable. Alternative solutions which seem more realistic are to use data 

from 1990 and onwards, or use sub-samples which start after the Federal Reserve Bank of 

Philadelphia took over the survey. 
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5. RESULTS 

This section shows the results from the analysis of forecast accuracy among individual 

forecasters in the SPF. It is divided into several subsections which deal with different research 

questions. The purpose of dividing the analysis up in different parts is to illuminate and inspect 

the accuracy in diverse situations, and see how accuracy is affected. 

5.1 How large are the forecast errors? 

In order to get an overlook of the situation with regards to the forecast accuracy it can be useful 

to document how large and numerous the forecast errors really are. Table 10 gives an indication 

on the frequency and the size of the forecast errors for the individual forecasts. At first glance, it 

can be seen that the percentage of errors larger than the given levels increase as the forecast 

horizon becomes longer. This is a well-documented and logical development, as longer horizons 

are harder to predict than shorter ones. One can also see the increased difficulty in forecasting 

longer horizons by looking at the accuracy statistics in the bottom section of the table. It is clear 

that the errors increase with the length of the horizon. Another result worth mentioning is the 

fact that the highest overestimations are much larger than the highest underestimations (see 

“range” variable). On all forecasting horizons, the largest overestimation is almost twice as large 

as the highest underestimation. This could have something to do with the sudden end of the high 

inflation period in the 1970s, where forecasters failed to regulate their forecasts in time.17 

For the one-quarter-ahead forecast the errors do not seem to be very large, as expected (see 

column one). Almost ninety-six percent of all responses have an error below one percent, and 

only 0.4 percent has an error larger than two percent. When looking at the two-quarter-ahead 

forecast the frequency increase, especially for the “smaller” errors (column two). Now only 

eighty-one percent of all responses have an error below one percent, nineteen percent have an 

error above one percent and almost four percent of the responses have an error above two 
                                                 

17 See development of the GDP price index in section 3.3.1. 
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percent. The three-quarter-ahead forecasts have only sixty-three percent of responses under one 

percent error, while over ten percent miss the target with more than two percent (column three). 

The last forecast horizon, the one-year-ahead forecast, undoubtedly seems to be the hardest to 

predict of the horizons included (column four). Only fifty percent have an error less than one 

percent, while almost six percent of all responses have an error higher than four percent. 

The MPE statistic in the bottom panel shows that the forecast error for the one-quarter-ahead 

horizon is fairly close to zero. This indicates that the under- and overestimations even out over 

time, making it an accurate forecast on average. For the other horizons, the MPE statistic is 

slightly more positive which indicates that forecasters on average tend to underestimate the 

actual change in inflation. It should be noted, however, that these numbers do not represent a 

large error. Nevertheless, based on this is could seem as forecasters are biased. 

Table 10: Accuracy statistics for different forecast horizons. 

 

Going more into detail, table 11 illustrates the largest forecast errors for the different horizons, 

and the individual who gave the forecast. It documents two important points. First, all the largest 

forecast errors (top three for all horizons) are negative, i.e. the largest errors came from an 

overestimation of the actual inflation values. This result is somewhat contradicting when 

compared to table 10 where it was shown that forecasters on average underestimate inflation. 

This means that the number of positive forecast errors have to be larger than the number of 

Horizon 1q 2q 3q 4q
Range -5.6 to 3.0 -11.0 to 6.0 -16.4 to 8.1 -22.3 to 12.3
>1% 3.9 % 18.9 % 37.0 % 50.0 %
>2% 0.4 % 3.8 % 10.5 % 18.7 %
>3% 0.1 % 0.9 % 4.7 % 8.8 %
>4% 0.1 % 0.2 % 1.5 % 5.7 %
MPE 0.07 0.16 0.25 0.28
MAE 0.34 0.65 0.99 1.34
RMSE 0.48 0.90 1.39 1.90

Note: Range gives max and min error for each forecast. 
Numbers show how many percent of all responses which are 
above a certain absolute error, for 1-4 quarter horizon. 
MAE=mean absolute error, RMSE=root mean squared error, 
MPE=mean prediction error.
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negative errors in order for the mean error to be positive. Second, all the largest errors are 

almost exclusively from the mid-1970s and early 1980s. This leads to a conclusion that these 

time periods were harder to predict, which is supported by the standard deviation in figure 2. It 

is no wonder why forecasters were given a bad reputation during this period (Croushore 2006). 

Many of the individuals listed in the table recur several times, across horizons. ID 117, for 

example, has eight entries in the table, while ID 125 has seven entries. These forecasters 

apparently had big problems dealing with the high inflation period. Thinking it would last longer 

than it did, they failed to moderate their forecasts for their upcoming inflation forecasts. Of the 

40 entries in the table (top ten*four horizons) there are only 14 different forecasters, which 

mean some optimistic forecasters stand for most of the largest errors. 

Table 11: Largest forecast error for different forecast horizons. 
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5.2 Accuracy for the longest individual forecasting series 

An important objective for forecasters is to generate accurate forecasts over time. One way to 

investigate if the individuals in the SPF database possess this quality is to measure the accuracy 

for the most continuous individuals, i.e. those with the longest consecutive forecasting series 

which I presented earlier (see table 2). Were these individuals able to accurately predict inflation 

over time? Did they manage to outperform the benchmark model? The result from this analysis 

is shown below in table 12 for the one-quarter-ahead horizon.  

Panel A: 1q horizon Panel B: 2q horizon
Number ID Time Error ID Time Error

1 117 1976q1 -5.64 47 1978q3 -11.04
2 41 1981q4 -5.11 117 1976q1 -9.45
3 47 1978q3 -5.10 117 1976q2 -7.01
4 13 1981q4 -4.04 127 1974q3 5.97
5 100 1987q3 -3.40 41 1981q4 -5.38
6 117 1976q2 -3.23 9 1982q1 5.19
7 127 1974q3 2.99 20 1968q4 4.78
8 8 1979q4 2.84 125 1977q3 -4.59
9 62 1982q3 -2.75 13 1981q4 -4.58
10 125 1977q3 -2.71 9 1982q2 4.54

Panel C: 3q horizon Panel D: 4q horizon
ID Time Error ID Time Error

1 47 1978q3 -16.37 47 1978q3 -22.33
2 117 1976q1 -15.45 117 1976q1 -18.95
3 117 1976q2 -11.98 117 1976q2 -17.04
4 127 1974q3 8.13 125 1974q1 12.32
5 9 1982q1 7.32 125 1977q3 -9.89
6 148 1971q3 7.20 7 1974q1 9.22
7 20 1968q4 7.06 148 1973q4 9.19
8 125 1977q3 -6.82 9 1982q1 9.18
9 125 1974q1 6.72 125 1975q1 9.05
10 148 1973q4 6.55 22 1978q3 9.00

Note: The table shows the ten largest forecasting errors and the 
quarter the forecast was made. One panel for each forecasting horizon. 
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Panel A illustrates how the different individuals performed when all of their responses are 

included (not only data for their longest consecutive series), and how their performance was 

compared to the random walk model. At first sight one can see that the errors are fairly similar 

across individuals, and that the number of individuals who over- or underestimate real change in 

inflation are about the same. The best performer, based on the MAE and RMSE statistics, is ID 

510 with a MAE equal to 0.17 and RMSE equal to 0.22. ID 483 comes close behind with MAE 

equal to 0.18 and RMSE equal to 0.23. A more striking point is that these two forecasters are the 

only ones who managed to beat the benchmark model, according to Theil’s U-statistic. At the 

other end one can find ID 125, who had almost twice as high RMSE as the random walk model. 

Included in the table is also the coefficient from the forecast comparison regression, and the 

corresponding p-value for the null of β equal to zero. With a five percent significance level, β is 

significantly different from zero for all individuals but two. It thus seems as the individual 

forecasters included in this table indeed have something to add to the forecast of the benchmark 

model, even though they have worse RMSE`s. 

Panel B shows the same statistics as panel A, but now only data comprised by the time span of 

the longest series are included. In addition, a column with RMSE/SD (RMSE normalized with 

the standard deviation) is included which makes it possible to take into consideration that some 

time periods are harder to predict than others. As panel B shows, ID 70 performed best in 

his/hers longest series given the difficulty in that period. His/hers performance was also 

approximately equal to the forecasts from the random walk model (Theil’s U is just above 

unity). Again, only ID 510 and ID 483 managed to outperform the benchmark model even 

though they were not the top performers according to column five. This leads to a preliminary 

conclusion that a simple random walk model is a good alternative forecast method for predicting 

the one-quarter-ahead change in inflation. It also seems as it was extremely hard to predict the 

change in inflation during the high inflation period, as forecasters perform badly in that period 

even though the difficulty has been taken into consideration. Statistically, the null hypothesis is 

rejected in all instances except two with a five percent level and all instances except five with a 

one percent significance level. According to these results, ID 30 and ID 48 do not statistically 

contribute to the forecast given by the benchmark. All other individuals have something to add 
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to the forecast given by the random walk model. In total, it therefore seems as these individuals 

who are included in the table in fact are able to predict inflation accurately over time. 

Table 12: Accuracy statistics for the most persistent individuals. 

 

5.3 Have forecast accuracy improved over time? 

A desired attribute for forecasters is the ability to learn from their previous mistakes, and correct 

or it in future forecasts. If individuals do have such a characteristic one could expect the 

accuracy to improve over time, especially taking into consideration that the forecasting 

techniques and tools available have improved (Zarnowitz and Braun 1993). This section will try 

to examine if this is true or not. 

Table 13 illustrates how forecast accuracy has developed over time, here represented by 

decades. The different panels correspond to different forecast horizons. Based on the RMSE/SD 

variable one can compare accuracy statistics for different time periods and consider different 

levels of difficulty. The MPE statistic for the different decades suggests that the 1980s and 

1990s were overestimated for all horizons, and increasingly so for the longer horizons. In the 

1970s and 2000s, on the other hand, inflation was underestimated for all forecast horizons. What 

is more, the errors seem to converge towards zero which suggests that accuracy has improved. 

# Id Length Start Stop MAE MPE RMSE T-U β P MAE MPE RMSE T-U RMSE/SD β P
1 65 49 1990q2 2002q2 0.28 0.10 0.39 1.35 0.23 0.021 0.15 -0.01 0.18 1.11 1.02 0.43 0.000
2 510 40 2002q1 2011q4 0.17 0.04 0.22 0.85 0.72 0.000 0.17 0.03 0.22 0.81 0.81 0.77 0.000
3 70 36 1980q4 1989q3 0.34 0.05 0.43 1.13 0.38 0.006 0.27 -0.17 0.31 1.09 0.68 0.40 0.024
4 30 36 1981q3 1990q2 0.38 -0.11 0.46 1.84 0.11 0.135 0.41 -0.14 0.48 1.71 1.58 0.13 0.189
5 60 34 1985q2 1993q3 0.32 -0.12 0.39 1.16 0.34 0.005 0.26 -0.20 0.31 1.44 1.36 0.22 0.038
6 433 34 1991q1 1999q2 0.19 -0.02 0.24 1.26 0.34 0.000 0.17 -0.15 0.21 1.45 1.50 0.19 0.001
7 48 33 1968q4 1976q4 0.58 0.46 0.68 1.63 0.12 0.337 0.58 0.46 0.68 1.63 1.21 0.12 0.337
8 483 32 2004q1 2011q4 0.18 0.04 0.23 0.91 0.61 0.000 0.21 0.05 0.25 0.89 0.85 0.64 0.000
9 446 32 2004q1 2011q4 0.21 0.03 0.25 1.12 0.40 0.001 0.27 0.15 0.32 1.13 1.08 0.40 0.011
10 125 30 1974q1 1981q2 0.60 -0.21 0.85 1.89 0.19 0.001 0.67 -0.30 0.93 2.09 1.84 0.06 0.006

Panel A: Entire dataset Panel B: Longest series

Note: Table shows accuracy statistics for the longest consecutive series of response to the survey,for the one-
quarter-ahead forecast. MAE=mean absolute error, MPE=mean prediction error, RMSE=root mean squared error, T-
U=Theils  U-statistic, SD=standard deviation for the respective time periods the forecast was made, thus 
representing the forecasting difficulty that period. Beta  comes from the forecast comparison regression and P 
denotes the P-value for the null of β=0.
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For the one quarter horizon the 1990s have been the most accurate decade, based on the MAE 

and RMSE statistics. For the three longest horizons, on the other hand, accuracy has improved 

over time resulting in the 2000s being the most accurate decade. Alternatively, if the RMSE`s 

are normalized with the standard deviation for the respective time periods the 1980s become the 

most accurate decade for the two shortest horizons, while the 2000s are most accurate for the 

two longest horizons. The 1990s brought along the worst forecasting performance in all decades, 

given the difficulty in that period. Thus, even though the accuracy statistics have improved over 

time it seems as forecasters should have performed better given the lower difficulty in the later 

decades. 

The most striking point one can draw from this table is how bad the performance have been 

compared to the benchmark model. For the one quarter horizon, Theil’s U-statistic is fairly close 

to unity which indicates an equal performance of the forecasters and the random walk model. 

For all other periods and horizons the benchmark model performed better, and in the worst 

period the RMSE for the benchmark model was over four times lower than the mean forecast. 

This result is also supported by the forecast comparison regression test. For the shortest horizon 

the null of β equal to zero is rejected for all decades with a five percent significance level, 

suggesting that the survey forecasts have something to add to the forecast given by the 

benchmark model. For the other horizons, however, the picture is less promising. None of the 

β`s are significantly different from zero, implying that the mean forecast have nothing to add to 

the forecast from the benchmark model. 

Going further, one can break down the average forecasts in each decade to show the best 

forecasters, and how they performed compared to the benchmark model. Table 14 shows this 

kind of analysis. According to panel A in the table, ID 145 performed best in the 1970s with ID 

21 and ID 14 close behind. They also outperformed the benchmark model as most forecasters 

did, except in the 1990s where only one individual slightly outperformed the naïve model. In 

total (panel E) it seems as the random walk performs better than roughly half of the ten best 

forecasters, based on Theil’s U. It also seems as forecasters have improved their forecasting 

over time based on a diminishing RMSE statistic. 
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Table 13: Accuracy statistics for different decades. 

 

Those individuals who performed best in total (panel E), have made their forecasts exclusively 

in the 1990s and 2000s. This could indicate several things: they were easy decades to forecast, 

forecasting techniques have improved (better computers, newer theories etc.) or that forecasters 

have improved their skills by learning from previous mistakes. Which one of these reasons that 

have made the largest impact on the accuracy, or if other reasons were present, is hard to test. 

That being said, according to the results in this subsection it is reasonably to believe that the 

forecast accuracy in fact has improved and most likely it is a result of a combination of all the 

above-mentioned reasons. 

An interesting point revealed in table 14 is that very few individuals recur in multiple decades. 

The most obvious explanation is that few participants have responded to the survey for so many 

years. Nevertheless, there are some individuals who have performed well in two consecutive 

decades. ID 94 was ranked sixth in the 1980s and first in the 1990s but did not make it into the 

list containing all responses. Another explanation for none recurring individuals could be that 

studies have shown that there are no forecasters who innately outperform the others (D'Agostino 

et al. 2010). For that reason, it is not likely anyone will recur as top performers in several 

decades. 

 

RMSE/ RMSE/
Years MPE MAE RMSE SD T-U β P Years MPE MAE RMSE SD T-U β P

Panel A: 1q Panel C: 3q
1970`s 0.26 0.38 0.48 0.87 1.06 0.43 0.046 1970`s 1.03 1.14 1.54 1.04 2.55 0.00 0.976
1980`s -0.16 0.26 0.31 0.54 1.06 0.41 0.001 1980`s -0.64 0.87 1.00 0.62 2.53 -0.05 0.463
1990`s -0.13 0.16 0.19 0.92 1.21 0.32 0.004 1990`s -0.50 0.55 0.60 1.20 3.37 -0.04 0.325
2000`s 0.07 0.20 0.24 0.91 0.91 0.60 0.000 2000`s 0.19 0.49 0.61 0.94 2.05 0.08 0.282

Panel B: 2q Panel D: 4q
1970`s 0.60 0.73 0.97 0.95 1.77 0.09 0.506 1970`s 1.55 1.67 2.26 1.16 3.49 -0.08 0.315
1980`s -0.37 0.55 0.64 0.57 1.76 0.03 0.636 1980`s -0.98 1.20 1.40 0.69 3.26 -0.07 0.308
1990`s -0.30 0.34 0.38 1.04 2.13 0.06 0.315 1990`s -0.71 0.79 0.85 1.35 4.43 -0.06 0.075
2000`s 0.14 0.34 0.42 0.92 1.51 0.21 0.076 2000`s 0.24 0.65 0.82 0.99 2.56 0.01 0.812

Note: Table shows average statistic per decade, and each panel shows a different forecast horizon. P shows p-
value for the null of β=0. See table 12 for additional notes. 
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Table 14: Top ten forecasters per decade. 

 

Nevertheless, it would be interesting to examine this question further. It is possible that some 

individuals are top performers in multiple quarters (in contrast to decades discussed above). If it 

turns out that some individuals are systematically outperforming the others in several quarters it 

could be an important finding. By learning what characterizes a top performer, researchers can 

gain valuable insight into well-functioning techniques and theories. If these findings could be 

generalized, others may learn from the findings and consequently people would get more correct 

inflation expectations.  

Table 15 below illustrates this question. Every time an individual has given one of the best 

forecasts (top five) in a quarter, he/she is given one point. This can then be compared to the 

number of quarters the individual has participated in the survey (column four). The first 

noticeable point from table 15 is the low number of quarters the individuals in the table have 

been top performers compared to their total number of responses. It does not seem as any of the 

individuals have managed to consistently outperform the others. That being said, there are one 

individual who separates somewhat from the rest. ID 20 is listed in all panels in the table which 

indicates that this person was one of the best performers for all horizons. What is more, in the 

four quarter horizon ID 20 have five more top rankings than next person on the list. Compared 

# ID RMSE T-U ID RMSE T-U ID RMSE T-U ID RMSE T-U ID RMSE T-U
1 145 0.357 0.73 80 0.249 0.87 94 0.146 1.26 500 0.172 0.88 440 0.167 1.63
2 21 0.376 0.79 44 0.273 0.78 429 0.150 1.02 502 0.183 1.00 414 0.178 1.16
3 14 0.380 0.83 99 0.289 0.99 440 0.167 1.63 439 0.194 0.98 416 0.181 1.28
4 133 0.426 1.02 51 0.296 1.04 431 0.169 0.99 510 0.214 0.80 502 0.189 0.95
5 84 0.427 0.92 94 0.298 1.06 411 0.176 1.18 498 0.219 0.89 500 0.195 0.90
6 7 0.429 0.99 67 0.300 0.94 414 0.180 1.22 407 0.227 0.82 409 0.205 1.68
7 89 0.431 0.91 5 0.304 1.01 416 0.181 1.28 483 0.235 0.87 510 0.215 1.11
8 138 0.443 1.07 70 0.314 1.11 65 0.184 1.13 548 0.247 0.75 429 0.219 0.83
9 144 0.459 1.04 84 0.330 1.04 446 0.191 1.22 456 0.248 1.14 404 0.223 1.48

10 66 0.465 0.94 15 0.332 1.31 424 0.193 1.25 508 0.249 1.13 483 0.226 0.90

Panel A: 1970`s Panel B: 1980`s Panel C: 1990`s Panel D: 2000`s Panel E: All

Note: The table shows the ten best forecasters in each decade based on RMSE for the one-quarter-
ahead horizon. Individuals with less than ten responses in the respective decades have been 
removed in order to secure against a lucky guess and remove those whose series stop early in a 
decade. See table 12 for additional notes.
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to the total number of responses it cannot be said that this is impressive, but it is still a signal 

that this individual performed better than the rest. The unanswered question is if this is enough 

to get some general insight in what characterizes a top performer. 

This finding is in line with Batchelor (1990) who showed that there are no consistency in 

individuals’ characteristics in accuracy rankings that can be used to pick the best individual 

forecasters. Zarnowitz (1984) also concluded that no single forecaster has been able to earn a 

consistent superior accuracy, as others have done before him (Zarnowitz 1967; McNees 1979, 

cited in (Zarnowitz 1984)).  

Table 15: Individuals with the highest number of top five rankings. 

 

5.4 Accuracy during recessions 

According to the National Bureau of Economic Research (2010, p. 1), a recession is defined as 

“a significant decline in economic activity spread across the economy, lasting more than a few 

months, normally visible in real GDP, real income, employment, industrial production, and 

wholesale-retail sales”. Such economic downturns produce uncertainty and increased volatility 

in macroeconomic variables and therefore it also represents one of the more difficult times to 

predict inflation. How will the central bank react? How will it affect consumption and saving? 

# ID Top RMSE Total # ID Top RMSE Total
Panel A: 1q Panel C: 3q

1 433 7 0.24 68 1 446 9 0.69 70
2 407 6 0.27 69 2 65 8 1.06 123
3 84 6 0.30 122 3 20 7 1.25 88

Panel B: 2q Panel D: 4q
1 428 7 0.50 75 1 20 13 1.55 88
2 65 6 0.69 123 2 431 8 0.84 64
3 431 5 0.43 64 3 420 8 0.88 69
Note: The table shows individuals with the highest number of forecasts 
which wereranked best in a quarter and total responses to the survey.  
Panel A-D shows 1-4 quarter horizon, respectively. Panel A: ID 20 and 60 
also have six top rankings but higher rmse. Panel B: ID 20, 72, 94 and 472
also have five top rankings but higher rmse. Panel D: ID 15, 30 and 411 
also have eight top rankings but higher rmse.
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The outcome of inflation will depend on the answer of such questions, thus making it very 

difficult to predict the actual inflation change. Previous findings seem to suggest that forecasters 

are not able to predict turning points, and most forecasters failed to predict the recessions in the 

early 1990s (Batchelor 2000). This section will examine how accurately individuals managed to 

predict inflation during recessions in the U.S. 

The first panel in table 16 shows average statistics for the different recessions. Several of these 

results are worth mentioning. First, forecasters have been more accurate during the most recent 

recessions than the older ones, both when difficulty is included (fourth column) and not. In fact, 

if one looks at the RMSE statistic it seems to be a clear distinction between the RMSE before 

and after the fourth recession in the early 1980s. After this recession, forecasters seem to be 

better at predicting inflation during recessions. It could mean later recessions have affected 

inflation in a less prominent way, making forecasting easier. On the other hand, it could also 

suggest that forecasters have learned from previous recessions and have become better at 

predicting inflation in difficult times. Second, the worst recession, in terms of forecast accuracy, 

was the second recession during the high inflation period in the mid-1970s. This conclusion 

holds both when looking at the RMSE and the MAE statistic. If the standard deviation is 

included, however, forecasters were least accurate in the first and third recessions. Third, 

forecasters underestimated inflation during the first three recessions but have overestimated 

inflation in the last four recessions. It seems as though newer recessions have brought lower 

inflation than what most forecasters predicted. One natural reason for this is the Federal 

Reserve, who has kept a much tighter leash on inflation after it was brought under control in the 

mid-1980s. Thus, it has also become easier to predict the outcome of GDP price index as it has 

been less volatile in the more recent recessions (see figure 2). 

Panel B goes more into detail, and shows the best individual in each recession based on the 

RMSE statistic, and how they performed compared to the simple random walk model. As can be 

seen, there are no individuals who were top performer in several recessions. It also seems, as 

pointed out above, that forecasters have improved their predicting skills because both the RMSE 

and RMSE/SD variables are declining over time. When comparing panel B to table 14, which 

shows top performers by decade, an interesting point emerges: none of the ten best performers 
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in each decade are the best performer in a recession. This may be due to several reasons. First, 

most forecasters did not complete the survey during all quarters the recession lasted which 

means they are not included in the evaluation in panel B. Second, the best performers in table 14 

may be biased if they did not predict inflation in “hard” quarters (i.e. quarters with a high 

standard deviation). This would lead to higher accuracy statistics as harder quarters often bring 

along higher forecast errors. Third, being a good forecaster involves predicting correct values of 

inflation but it also implies being good at predicting turning points in inflation, e.g. changes 

before and after a recession. Take ID 117 as an example. He/she was the best performer during 

the recession in the early 1970s (no. 2) but is not to be found on the list of top ten performers 

during the decade. The reason for this could be found in table 11. ID 117 has the highest 

forecast error ever given for the one-quarter-ahead forecast horizon which means that he/she 

totally failed in his/hers prediction when the high inflation growth ended. Thus, many of the best 

performers during the decade may have been better at predicting the turning point of the 

recession which kept their total performance close to the top. 

Table 16: Forecast accuracy during contractions for the one-quarter-ahead horizon.18 

 

                                                 

18 Due to the short time span of the recessions there are insufficient observations to do a forecast comparison regression test. 

Recession four (1981q3-1982q4) had only one individual who responded to all surveys throughout the recession. All the others 

had three or more to individuals to rank. 

Time of recession MAE MPE RMSE RMSE/SD ID MAE MPE RMSE RMSE/SD T-U
1: 1969q4 - 1970q4 0.49 0.38 0.56 2.53 86 0.35 0.22 0.41 1.86 1.22
2: 1973q4 - 1975q1 0.77 0.58 0.90 1.80 117 0.56 0.46 0.68 1.36 1.39
3: 1980q1 - 1980q3 0.40 0.26 0.61 2.51 98 0.19 0.19 0.23 0.95 0.90
4: 1981q3 - 1982q4 0.48 -0.27 0.72 2.18 70 0.39 -0.39 0.45 1.36 1.71
5: 1990q3 - 1991q1 0.24 -0.16 0.32 2.06 62 0.14 -0.14 0.17 1.10 0.65
6: 2001q1 - 2001q4 0.17 -0.06 0.22 1.28 428 0.11 -0.05 0.12 0.67 0.66
7: 2007q4 - 2009q2 0.26 -0.12 0.35 1.20 472 0.14 -0.13 0.19 0.65 0.59

Panel A: Average statistics Panel B: Best individual

Note: This table shows accuracy statistics for the one-quarter-ahead forecast horizon for 
different recessionary periods in the US economy, as defined ny the National Bureau of 
Economic Research (NBER).  Average statistics (panel A) are calculated across the time period for 
the recession, the same goes for the standard deviation. The individual must have participated in 
all surveys which are included by the time period given by the NBER in order to be considered in 
panel B. See table 12 for additional notes.
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5.5 Which industry contains the best forecasters? 

Even though previous literature has studied individual forecasts, there is to my knowledge none 

who have used the industry variable in their research. One obvious reason for this is that there 

have been no studies on individual data after the industry variable was introduced in 1990q2. 

Thus, an analysis of the accuracy for the different industries is very interesting and of current 

interest. 

The Federal Reserve Bank of Philadelphia allocates an industry number based on the type of 

firm the individual currently works at. Industry one contains people working in a firm 

characterized as a financial provider (investment banking, hedge and mutual funds, asset 

management etc.), industry two contains non-financial providers (universities, forecasting firms, 

research firms etc.) while industry three contains all people where they do not know the 

affiliation. Having the ability to predict the inflation correctly would be of great importance to 

all of these firms, as forecasting is a large part of their daily jobs.   

Table 17 shows the forecast accuracy for the different industries for four different forecast 

horizons. Some of the results from this table are worth presenting. First, there seems to be slight 

differences in accuracy between the different industries. Based on the MPE statistic, industry 1 

and 2 outperform industry 3 with about 1.5 percentage points. However, if we base performance 

on MAE and RMSE statistics, they are almost identical in performance and this goes for all 

forecast horizons. It seems as though none of the industries have an advantage over others when 

it comes to forecasting inflation. Second, a more striking result is that all industries across all 

forecast horizons seem to have overestimated inflation in their predictions. This finding is 

somewhat contradictory to the earlier findings where it was suggested a tendency towards 

underestimation (see table 10 and table 18). The explanation for this is simple and can be found 

in table 13. On average, forecasters have underestimated inflation in the 1970s and 1980s, while 

they have overestimated inflation in the 1990s and 2000s. Thus, since I only use data from 

1990q2 in this analysis it will result in an overestimation from the industries. This also shows 

what happens to the forecasting accuracy when the turbulent 1970s and 1980s are removed from 

the sample. 
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With this in mind a new question arises: are the industries biased? After performing a bias test it 

seems as the answer depends on the forecast horizon (see table 17). For the two shortest 

horizons the null hypothesis of α equal to zero cannot be rejected, thus suggesting unbiasedness. 

For the two longest horizons, however, the results are opposite. On a five percent significance 

level all industries are biased. On the other hand, if we use a one percent significance level it is 

only industry one and two for the longest horizon which are biased. 

Table 17: Forecast accuracy for different industries. 

 

5.6 Overall performance 

This section will provide a discussion concerning the overall performance of the individual 

forecasters. More specifically, it will examine the predictive accuracy and biasedness of 

individuals and how forecasters perform compared to the random walk model. The analysis will 

be divided into two sub-samples; one containing all observations and one containing data from 

1990q2 when the Federal Reserve Bank of Philadelphia took over the survey. 

Table 10 indicated, based on the MPE statistic, that forecasters on average underestimate 

inflation. If this is true, it is a problematic result because if forecasters are systematically 

underestimating the forecasted variable it means that forecasters do not learn from their previous 

mistakes and therefore are biased. Table 18 examines this in more detail, and shows the 

percentage of responses that fall over or under the true change in real inflation for each of the 

Industry MPE MAE RMSE α P Industry MPE MAE RMSE α P
Panel A: 1q Panel C: 3q

1 -0.007 0.226 0.290 -0.007 0.504 1 -0.070 0.611 0.751 -0.070 0.041
2 -0.009 0.221 0.278 -0.009 0.334 2 -0.062 0.597 0.740 -0.064 0.037
3 -0.027 0.222 0.302 -0.027 0.265 3 -0.175 0.574 0.751 -0.175 0.030

Panel B: 2q Panel D: 4q
1 -0.026 0.419 0.519 -0.027 0.233 1 -0.133 0.810 0.991 -0.141 0.003
2 -0.028 0.403 0.501 -0.028 0.147 2 -0.113 0.808 0.995 -0.118 0.006
3 -0.093 0.392 0.508 -0.093 0.070 3 -0.229 0.785 0.994 -0.234 0.041

Note: The table shows  accuracy statistics for different industries, on average across time. The 
panels shows different forecasting horizons. Data from 1992q2. α=bias, p=p-value for null  
hypothesis α=0. See notes to table 12.
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four different forecast horizons (see panel A). It confirms the earlier findings, because 

individuals seem to persistently underestimate real change in inflation. On all horizons, more 

than 50 percent of all responses are below the actual outcome. This seems to indicate some sort 

of biasedness among the individual forecasters. However, when testing this statistically the 

results are not that shocking. According to the results in the table below, roughly two-thirds of 

the individuals have an α significantly different from zero which mean they are biased. As the 

horizon increases, so does the percentage of biased forecasters. The increase cannot be said to be 

alarming, however, as it only rises slightly more than two percentage points from the one quarter 

horizon to the four quarter horizon. The same table also gives a nice summary with regards to 

the forecast performance of the individuals compared to the benchmark model. It shows the 

proportion of responses which perform better or worse than the benchmark. The results are a bit 

striking, as they indicate that the majority of responses from the survey are worse than the 

simple benchmark. For the four quarter horizon, for example, 86 percent of the responses were 

worse than the benchmark. Note, however, that the table says nothing about the difference 

between the forecasts. So if the individual forecast is 0.001 percent worse than the benchmark it 

is still considered to be worse, even though the difference is not significant. Therefore, I also 

conducted a forecast comparison regression for all individuals to see how many percent of the 

individuals who in fact have no information to add compared to the random walk model. For the 

one quarter horizon, almost 50 percent of the individuals have a comparison regression 

coefficient which is significantly different from zero implying they have something to add to the 

forecast from the benchmark model. For the longer horizons it looks worse, as only 12.5 

percent, 9.1 percent and 16.6 percent add information to the forecast from the benchmark model 

in the two-four quarter horizons. This basically means that the majority of individuals fail to 

outperform a simple random walk model. 

Table 18 also shows the same statistics when only data from 1990q2 and onwards are being 

analyzed (see panel B). This will illustrate how the forecasting performance for the individual 

forecasters is when the high inflation period and most of the problems discussed in section 4.3 

are removed. The situation seems to be a bit better. According to the table, most forecasters are 

now overestimating inflation in contrast to panel A where underestimations were more frequent. 

SNF Working Paper No 51/12



62 

 

Nevertheless, it still suggests biased forecasts and therefore the same bias test as above was 

conducted. For this sample, the test shows fewer individuals being biased for all horizons than 

for the sample including all horizons. This leads to an assumption that forecasters predicting in 

the last two decades are more accurate than forecasters predicting in the earlier years. It could 

also suggest that forecasters thus have become more accurate over time. The bottom section of 

panel B illustrates how the SPF forecasters’ performance was compared to the random walk 

model. Here the results are not much better than before, emphasizing the good performance of 

the random walk model. Based on percentages, the numbers are almost exactly the same as one 

could see when the whole dataset was included. However, when the forecast comparison 

regression is conducted the results are better than before for the two shortest horizons. Now over 

67 percent of forecasters in the one quarter horizon, and 21 percent of forecasters in the two 

quarter horizon have something to add to the forecast by the random walk model. For the three 

quarter horizon, on the other hand, the situation is similar to the previous findings, while the 

four quarter horizon actually has fewer individuals who can beat the random walk. 

In total it seems as forecasters have improved over time as tests show that there are fewer biased 

individuals and more individuals manage to beat the random walk model. Still, the majority fail 

to give forecasts that contain more information than the forecast from the random walk model 

for the three longest horizons. 

Table 18: Overall performance for two different sub-samples. 

 

1q 2q 3q 4q 1q 2q 3q 4q
Overestimation 46.8 % 46.5 % 45.5 % 47.3 % 53.3 % 54.2 % 54.8 % 55.8 %
Underestimation 53.2 % 53.5 % 54.5 % 52.7 % 46.7 % 45.8 % 45.2 % 44.2 %
Biased (α=0)* 33.8 % 35.1 % 35.1 % 36.1 % 25.1 % 28.1 % 30.5 % 30.3 %
Worse than RW 59.9 % 74.5 % 81.2 % 85.9 % 59.8 % 74.1 % 80.7 % 84.4 %
Better than RW 40.1 % 25.5 % 18.8 % 14.1 % 40.2 % 25.9 % 19.3 % 15.6 %

β=0*, p<0.05 49.4 % 12.5 % 9.1 % 16.6 % 67.1 % 21.2 % 9.4 % 8.3 %

Panel A: All observations Panel B: Observations from 1990q2

Note: Top three rows show the proportion of responses which over- or underestimate real inflation,  
and the proportion of individuals who are biased. Bottom three rows show the proportion of 
responses which predict better or worse than the RW model, and the proportion of individuals 
where the null ofβ equal to zero is rejected on a 5% level
*One individual dropped due to insufficient data for the 4q horizon.
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5.7 Comments 

Given the information in section 4.2 concerning the timing of the survey, it seems reasonable 

that I have chosen a benchmark model that use information available in the previous quarter. 

However, due to the implications with revision in the GDP variable, as mentioned before, it 

could have given the benchmark model a too big advantage which in turn biased my results. I 

have therefore repeated the analysis in the lower part of table 18 with the random walk model 

lagged one more quarter to see if this affected the results. According to table 19, it did not 

remarkably change the results. The majority of the forecasts are still worse than the random 

walk model on all horizons. The results from the forecast comparison regression test are 

somewhat better for the two shortest horizons, but equal in the two longer horizons. 

I also could have included different time series models as comparison, but after seeing the 

results from the simple random walk model I chose not to. According to Ang et al. (2007) an 

ARMA(1,1) model is one of the best performers among time series models when predicting CPI 

inflation. This model, which is not very sophisticated either, performs slightly better than the 

random walk model for my data as well, and therefore I see no point in repeating all the analysis 

when the results are known in advance. Based on the data and techniques I have used it is 

apparent that time series models are capable of predicting GDP price index inflation quite well. 

Table 19: Performance relative to benchmark after lagging. 

 

1q 2q 3q 4q
Worse than RW 55.6 % 65.5 % 72.9 % 77.8 %
Better than RW 44.4 % 34.5 % 27.1 % 22.2 %

β=0*, p<0.05 54.5 % 21.6 % 9.7 % 16.7 %

Note: Performance relative to RW model after lagging 
values one more qurter. See table 18.
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6. Conclusion 

The purpose of this thesis has been two-folded. First, as a part of a research project I cooperated 

with a co-student in an attempt to give an overview of potential and current problems with the 

SPF database. It was our intention to document these problems and come up with possible 

solutions based on our own suggestions or based on earlier findings in the literature concerning 

the database. Second, I tried to give an assessment of the forecast accuracy of individual 

forecasters based on data from the SPF. Most previous and up to date studies concerning survey 

data have used pooled data in form of a mean or median to give an assessment. In that respect, 

this thesis is a supplement to the existing literature. 

We found five problems with the database which are worth mentioning. First, it has been noted 

in previous literature working with individual data that forecasters respond infrequently to the 

survey. A well adopted solution is to drop all individuals with fewer than twelve responses. 

Second, there is a problem with missing values in the one-year-ahead forecast. Due to 

incomplete survey questionnaires by some respondents there are five quarters which have no 

value for this forecast horizon. A solution is to start with data from 1972q3, as all quarters with 

missing values are located in the beginning of the survey. A second solution is to fill in values, 

e.g. based on a linear projection. A third problem is reallocation of used ID’s. Due to lack of 

control in the early periods of the survey there may be a problem with several individuals 

forecasting under the same ID number. This will make impossible to separate individuals from 

one another. It is guaranteed, however, that this is only a potential problem with date from 

before the Federal Reserve Bank of Philadelphia took over the survey in 1990q2. Fourth, it 

should be noted that several variables have multiple changes in base year. This will only pose a 

problem if level data are being used, but can be ignored if changes in these variables are being 

used. Fifth, there seem to be a problem concerning the consistency in the forecasted values. The 

one-year-ahead inflation often deviates from the forecast of the annual growth next year, for 

instance. A solution adopted in the literature is to chop of those observations which seem to be 

inconsistent. A new problem arises, however, due to the fact that the annual average forecast 
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was introduced in 1980q1 and we have no way of checking how inconsistent forecasters were 

before this date. 

With regards to the forecast accuracy of individual forecasts there are several findings. First, 

some individuals are able to accurately predict inflation over time and it also seems as they 

become more accurate over time. This finding is based on analysis of the longest individual 

forecasting series in the database and forecast accuracy across decades. None of the individuals 

seem to systematically outperform the other forecasters in the database. Why forecasters have 

improved over time is hard to test based on this data, so I can only conjecture. It may be that 

forecasters have improved their skills by learning from previous mistakes and by enhancing 

their knowledge. However, it could also be a result of better technology and a less volatile 

underlying variable. Second, forecast accuracy during recessions have been worse than the 

average accuracy during the respective decades suggesting a deteriorating performance during 

difficult times. Nevertheless, some individuals performed well during these difficult times and 

outperformed the random walk model. It also seems as the accuracy have improved from the 

earliest recessions to the newer ones. This underlines the abovementioned finding that forecasts 

are getting more accurate over time. No newer papers have documented this, but Zarnowitz and 

Braun (1993) found no improvement in their dataset up until 1990. Third, I find no difference 

between industries in terms of forecasting accuracy for any horizon. I did, however, find 

evidence suggesting biasedness in the two longest horizons which means that they are 

systematically overestimating inflation. This is, as far as I know, a new finding and thus is a 

valuable contribution to the existing literature. Fourth, I also find evidence for bias among some 

individuals. The majority, about two-thirds, seems to be unbiased. This result is similar to 

Zarnowitz (1985), and somewhat contradicting to Keane and Runkle (1990) who find no 

evidence of bias. Fifth, most of the individuals fail to add information to the forecast given by 

the same change random walk model. This applies especially for the three longest horizons. This 

is somewhat contradicting to previous findings. Ang et al. (2007), for example, find that surveys 

outperform most time series models in forecasting CPI inflation. It should be noted, however, 

that researchers have found that a random walk model can perform well in forecasting inflation 

(Ang et al. 2007; Atkeson and Ohanian 2001). 
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Given the importance for most economic actors of having correct inflation forecasts it is 

imperative to continue the research on this phenomenon and questions related to the issue. 

Based on the results in this paper, it would be interesting to see a study on individual forecasts 

of the GDP price index when vintage data are used (in contrast to revised data, which I used). 

This might explain some of the difference in forecasting accuracy between individuals and the 

random walk model. Further studies could also address the importance of having correct 

expectations. If it turns out forecasters are biased, how will this affect policy decisions? Another 

important question in this regard is how expectations from surveys affect the overall inflation 

expectation in the society. If people use surveys as a source of information, which consequences 

would it have if survey expectations is not satisfactory? 
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This paper addresses the forecast accuracy of individual inflation forecasts from 
the Survey of Professional Forecasters. Based on a variety of accuracy statistics, 
there are five main findings to report. First, I find that some individuals are able to 
accurately predict inflation over time, and that forecasters on average have improved 
their accuracy over time. Second, forecasting accuracy becomes worse during 
recessions compared to the average accuracy in the respective decades but 
accuracy has improved in newer recessions compared to old ones. Nonetheless, 
some individuals are able to outperform the mean forecast and a forecast made 
from a random walk model. Third, I find no difference in accuracy among industries 
but I find evidence for biased forecasts for the three and four quarter horizon. Fourth, 
I find evidence for bias in roughly one third of the individuals for all forecasting 
horizons. These results improve slightly when only data from the last two decades 
are being analysed. Fifth, the majority of individuals perform significantly worse 
than a random walk model regardless of used time span.

I also find several problems with the database, including: missing values for the 
one-year-ahead forecast, irregularities in forecasters’ response, reallocation of 
used ID’s, changing base year and inconsistencies in individuals’ forecasts.
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