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Abstract  

In the context of bioeconomic modeling, I discuss issues related to the use of discrete and 

continuous time. Using discrete or continuous time for a given modeling problem is not 

necessarily a matter of preference, but has methodological consequences that should be 

observed. These include differences in dynamic behavior and the construction of corresponding 

models for transfer, between models of different type, of functional forms, parameter values, or 

results. Further, I discuss properties of quota advice based upon a continuous time model.  

  

Keywords: Discrete time modeling, continuous time modeling, surplus production bioeconomic 

models.  
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1 Introduction 

A fundamental question in applied modeling is whether to formulate a model in discrete or 

continuous time. The question has been discussed in various contexts, and has been latent at 

least since the dawn of modern empirical research. Some economists have shown interest in the 

question: Medio (1991) discussed problems of chaotic dynamics in relation to business cycle 

models, and Carlstrom and Fuerst (2003) discussed selected issues and open questions related 

to discrete and continuous time formulations in macroeconomics more generally. Sims (2008) 

considered bias and non-intuitive effects of discrete time models in the context of time series 

analysis. While the general discrepancy between discrete and continuous time models may be 

reasonably well understood, certain considerations in bioeconomics are worthy of deliberation. 

Notably, the focus in this essay is on surplus production models, which is where the discussed 

issues are of relevance. Age-structured models—alternatives to surplus production models in 

bioeconomic modeling—are fundamentally of a discrete nature although conceptually derived 

from a continuous framework. 

 Given the prevalence of models in both discrete and continuous time, the fisheries 

economist ought to have a natural interest in my topic. But the interest may be culled by a 

misguided—if not erroneous—belief that using discrete or continuous time is simply a matter 

of taste or preference. However, discrete and continuous time models have their strengths and 

weaknesses, and for any given modeling problem, one or the other may be ideal. This idea that 

the question is a matter of preference may underpin misuse and inconsistencies. For example, 

adoption of functional forms or parameter values or estimates from other studies into a given 

model regardless of type (type signifying discrete or continuous time) may lead astray. One 

cannot generally apply functional forms or parameter values or estimates (the latter follows 

from the former) in a model of opposite type without further ado, because a given functional 

form will have different properties, in particular dynamic properties, in the opposite model type. 

Another example of inconsistency is to compare or incorporate results between models of 

different types without rigorous transformations.  

 This matter-of-preference-idea is, admittedly, a subtlety which has no consequence 

when one works exclusively with one model type. This subtle nature and its lack of consequence 

in much theoretical work may explain why the idea exists and why inconsistencies go 

undetected. Nevertheless, the idea is puzzling because I think many bioeconomic researchers 

know, somewhere deep down, that discrete and continuous models have different properties. A 

possible explanation could then be that a transformation—the construction of a corresponding 
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model—is believed theoretically possible, and perhaps even that this transformation is trivial. 

If one has this belief, one may conclude that model type does not really matter and that it is a 

matter of preference only. But, as I will explain and illustrate in a simple example, construction 

of a unique corresponding continuous time model for a discrete time model is not generally 

possible. And the construction of a corresponding discrete time model for a continuous time 

model may be cumbersome and require some numerical sophistication. Let me hasten to add 

that some of the mentioned inconsistencies, for example the adoption of discrete time parameter 

estimates in continuous time models, are present in some of my own early work. As the 

discussion below shows, dealings with such inconsistencies have led to separate, method-

focused research papers. These experiences suggest that this essay has merit. 

 Another potential explanation for inconsistencies is an implicit assumption that the 

approximation error is small and nevertheless dominated by other approximations that 

inherently crop up in bioeconomic modeling (and in most other model-related work; see 

discussion in Sims, 2008). That such assumptions tend to go unmentioned can mislead readers 

who may, subconsciously, conclude: Matter of preference. Furthermore, the approximation 

error may be large.  

 Much of bioeconomic theory (for example, much of Clark, 1990) relies on continuous 

time formulations. But in applied work, discrete time models may be more natural and 

appropriate. Examples include econometric studies and dynamic systems with discrete 

properties, such as fish stocks with migrating behavior. Discrete time models are also subject 

to theoretical work, obviously. The construction of corresponding models is thus of primary 

interest, for example, when theoretical results from a continuous time model are to be compared 

to—or superimposed upon—an applied, discrete time model. Or when theoretical results are 

compared between models of different types. However, the literature is surprisingly silent on 

the question of corresponding models. 

 Alongside the question of corresponding models, a discussion of some of the different 

properties of discrete and continuous time models is in place. The discussion shows that 

properties that are strengths in one setting may be a weakness in the other. Such differences 

underpin the importance of constructing corresponding models and shows that discrete and 

continuous time models complement rather than exclude each other. 

 The aim of this essay is not to derive formal properties or proofs of propositions, but 

rather to illustrate key differences between model types in simple examples. I do not provide a 

catalogue of inconsistencies or misuse, and I have no intent to undermine earlier work. To the  
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contrary, I have the greatest respect and gratitude for earlier work because it has helped me 

develop an understanding of the matter of time in models. 

 

2 Dynamic properties in discrete and continuous time 
In discrete time models, time is represented by discrete, usually equidistant, and sequentially 

ordered points. A state variable may take different values at each point in time. An alternative 

interpretation, particularly invoked in empirical work, is that model variables are observable 

only at the discrete times. Either way, the dynamic behavior of variables (how they move) 

between the discrete times are not specified and is essentially beyond the model. In continuous 

time models, time is continuous (and sequentially ordered) such that between any two points in 

time, there exists a third point in time. Model variables are observable at all points in time, and 

dynamic behavior, how variables move, between points in time is known. Both types of models 

have strengths and weaknesses, and for a given modeling problem, one or the other may be 

ideal. 

Continuous time is often preferred in theoretical work. The workhorse model numero 

uno, the standard logistic growth law, is: 

𝑓𝑓(𝑥𝑥) = 𝑟𝑟𝑥𝑥 (1 − 𝑥𝑥
𝑘𝑘) (1) 

In (1), 𝑥𝑥 is the stock biomass level, 𝑟𝑟 is called the intrinsic growth rate, and 𝑘𝑘 the carrying 

capacity. When natural growth is said to follow the standard logistic in continuous time, it 

usually means that the time derivative is equal to (1), d𝑥𝑥/d𝑡𝑡 = 𝑓𝑓(𝑥𝑥), assuming for the moment 

that no harvest takes place. The first order discrete approximation is: 
𝑋𝑋𝑡𝑡+Δ𝑡𝑡 − 𝑋𝑋𝑡𝑡

Δ𝑡𝑡 = 𝑟𝑟𝑋𝑋𝑡𝑡 (1 −
𝑋𝑋𝑡𝑡
𝑘𝑘 ) (2) 

In (2), 𝑋𝑋𝑡𝑡 is the stock biomass level at time 𝑡𝑡, and Δt is a constant time step or increment. 

Equation (2) can be rewritten as follows: 

𝑋𝑋𝑡𝑡+Δ𝑡𝑡 = 𝑋𝑋𝑡𝑡 + Δ𝑡𝑡 ⋅ 𝑟𝑟𝑋𝑋𝑡𝑡 (1 −
𝑋𝑋𝑡𝑡
𝑘𝑘 ) (3) 

The following equation, clearly inspired by (3), is often used in discrete time models: 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + R𝑋𝑋𝑡𝑡 (1 −
𝑋𝑋𝑡𝑡
𝑘𝑘 ) (4) 

The parameter 𝑅𝑅 in (4) is referred to as the growth rate. From (3) and (4), it emerges that 𝑅𝑅 =
Δ𝑡𝑡 ⋅ 𝑟𝑟, that is, 𝑅𝑅 = 𝑟𝑟 requires Δ𝑡𝑡 = 1. With Δ𝑡𝑡 = 1, however, equation (2) is not necessarily a 

good approximation of d𝑥𝑥/d𝑡𝑡 = 𝑓𝑓(𝑥𝑥); (2) is only guaranteed to be a good approximation in the 

limit Δ𝑡𝑡 → 0. A common statement is that (2) holds for small Δ𝑡𝑡. But to estimate a value for 𝑅𝑅 
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using equation (4) and subsequently use that value in a continuous time model (1) is not 

necessarily consistent. In general, care must be taken when using parameter estimates in a 

continuous time formulation. As pointed out by Sims (2008), discrete time approximations to 

continuous time models where derivatives appear may be poor, but the discrepancy is often 

overlooked. Application of Markov Chain Monte Carlo (MCMC) methods makes estimation of 

differential equation models easier (Sims, 2008). An approach related to MCMC methods is the 

ensemble Kalman filter, which has been applied to fisheries models (Kvamsdal & Sandal, 2015; 

Ekerhovd & Kvamsdal, 2017). 

 Equation (4), the discrete time logistic growth equation, can be derived from the first 

order approximation of the continuous time logistic growth function, as shown above. This 

transition brings up the question of corresponding models. To be clear, the discrete time 

corresponding model of a continuous time model equals the continuous time function at the 

discrete observation times. Figure 1 illustrates the idea. The left panel shows a curve for how a 

variable develops in continuous time, and the right panel shows how the discrete time model 

corresponds to the curve at the discrete observation times. In the simplest cases, such as for the 

logistic, there exist a closed form discrete time corresponding model. Notably, this closed form 

is not equation (4), but is the Beverton-Holt growth function (Gyllenberg et al. 1997). The 

differing dynamic behavior of (1) and (4) will be discussed further below. When closed forms 

are infeasible, numerical methods such as the Runge-Kutta approximation can be applied to 

discretize a continuous time function (Kvamsdal et al. 2017). 

 
Figure 1: Illustration of a variable developing in continuous time along the time dimension (𝜏𝜏) 

(left panel), and the discrete time corresponding model (right panel). 
 

 The example above illustrates a general point, that for continuous time models, 

corresponding discrete time models are feasible in theory. Continuous time corresponding 

models for discrete time models are a different matter, however. For a given discrete time 

model, a continuous time model that corresponds to the discrete time model at the discrete 

observation times can be constructed. A spline function, for example, can be specified to pass 
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through the discrete time observations. But this continuous time model is not unique. Figure 2 

illustrates the issue. The left panel shows how a discrete model variable develops from one time 

step to the next. The right panel shows three different continuous time models that correspond 

to the discrete model at the discrete observation times. The continuous time corresponding 

model must fill the void between the discrete observation times, and there is no unique way to 

do this. In a sense, the discrete time function contains less information than a continuous time 

function, and the continuous time model is underdetermined. 

 
Figure 2: Illustration of a discrete time development from one time step to the next (left 

panel), and different corresponding continuous time models (right panel). 
 

 The dynamic properties of the logistic growth law in continuous and discrete time are 

fundamentally different. For example, at high stock levels (𝑋𝑋𝑡𝑡 ≫ 𝑘𝑘), equation (4) yields  

𝑋𝑋𝑡𝑡+1 < 𝑘𝑘. That is, a catastrophe occurs, and from one time step to the next, a very large stock 

has collapsed. In the extreme, 𝑋𝑋𝑡𝑡+1 < 0, which obviously is an unrealistic feature. With logistic 

growth in continuous time, the stock level would rapidly converge to the carrying capacity if 

𝑥𝑥 ≫ 𝑘𝑘, which is a reasonable phenomenological feature for many fish stocks and is also 

intuitively appealing. While stock levels in the discrete time formulation that imply 𝑋𝑋𝑡𝑡+1 < 0 

may be beyond the region of interest, any stock level 𝑋𝑋𝑡𝑡 > 𝑘𝑘 imply some kind of collapse if 

𝑅𝑅 > 1 because then 𝑋𝑋𝑡𝑡+1 < 𝑘𝑘 (see derivation below). Further, for any 𝑅𝑅, there is some stock 

level 𝑋𝑋𝑡𝑡 > 𝑘𝑘 implying 𝑋𝑋𝑡𝑡+1 < 𝑘𝑘. This is a nonintuitive and somewhat disturbing property. 

Again, the carrying capacity is approached from above for any growth rate in continuous time 

models.  

 In general, a hump shaped discrete time growth function, that is, a function with a 

maximum, can lead to cyclical behavior if the maximum 𝑋𝑋𝑡𝑡∗ is below the carrying capacity. 

Clark (1990) refers to this feature as overcompensation. If we write the growth function as 

𝑋𝑋𝑡𝑡+1 = 𝐺𝐺(𝑋𝑋𝑡𝑡), the carrying capacity is where 𝐺𝐺(𝑋𝑋𝑡𝑡) = 𝑋𝑋𝑡𝑡, say 𝑋𝑋𝑡𝑡𝑘𝑘. Cyclical behavior can 

emerge if 𝑋𝑋𝑡𝑡∗ < 𝑋𝑋𝑡𝑡𝑘𝑘. If 𝐺𝐺(𝑋𝑋𝑡𝑡) is the logistic and defined by the right-hand side of (4), we can 
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take the derivative and find that the maximum is given by the expression 𝑘𝑘
2𝑅𝑅 (1 + 𝑅𝑅). The 

condition that the maximum is less than the carrying capacity, 𝑘𝑘2𝑅𝑅 (1 + 𝑅𝑅) < 𝑘𝑘, leads to 𝑅𝑅 > 1. 

Cyclical behavior of (4) is discussed in detail by May (1974). 

While cyclical behavior may be fascinating in itself, it carries with it features that may 

be undesirable in a bioeconomic model. A simple illustration may be instructive. The left panel 

in Figure 3 displays the discrete time logistic growth curve with 𝑅𝑅 = 2 and 𝑘𝑘 = 1 (red curve). 

The blue curve is the identity map or the replacement curve, 𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡. The black curve 

illustrates a time path development with 𝑋𝑋1 = 0.1 that ends up fluctuating around, and slowly 

converging upon, the carrying capacity. The right panel in Figure 3 display the same growth 

curve and the time path with 𝑋𝑋1 = 0.067, which ends up basically directly at the carrying 

capacity (with small fluctuations beyond the rounding error). The general point is that the long 

run behavior varies significantly with the initial stock level. In nature, fluctuations may be more 

the rule and stability the exception, but such significance of the initial state may be unfortunate 

for a theoretical model. 

  
Figure 3: The logistic growth function in discrete time (red curves), with 𝑅𝑅 = 2 and 𝑘𝑘 = 1, 

see equation (4), the replacement curve 𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 (blue curves), and time paths for 𝑋𝑋1 = 0.1 
(left panel) and 𝑋𝑋1 = 0.067 (right panel). 

 

 Local stability of equilibria is formally analyzed in terms of the slope of the growth 

function. As mentioned, May (1974) provides a comprehensive analysis of the discrete time 

logistic and shows that for 𝑅𝑅 > 2, the equilibrium at the carrying capacity is unstable. Various 

limit cycles emerge as the growth rate is increased, eventually ending in behavior 

indistinguishable from chaos. Chaos, appropriately, is difficult to define precisely, but a typical 

feature is a substantial long-run sensitivity to initial conditions, as vividly captured in the 

butterfly effect. Propensity for chaos is another dynamic property that is fundamentally 

different for discrete and continuous time models. As discussed by Lindström (2009), discrete 
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time models have potential for more complicated dynamics. For continuous models, the 

Poincaré-Bendixson theorem excludes chaotic dynamics for one- and two-dimensional 

differential equation systems (see Lindström, 2009 and references therein). But as said, in 

discrete time, chaos can occur in a one-dimensional model. More generally, discrete-time 

models readily accommodate a rich set of phenomena that require a more extensive structure to 

be represented in continuous time. Some examples are lags and delays (Clark, 1990, p. 197), 

hysteresis more generally, catastrophic collapse as discussed above, and seasonal models 

(Kvamsdal et al. 2017, 2020). This richness of discrete-time formulations is difficult to 

represent in typical continuous-time models because more regularity is imposed upon the latter.

  

3 Fisheries economics models in discrete and continuous time 
Applied in fisheries economics, models formulated in discrete time has the advantage that they 

typically provide the harvest quota directly. Thus, if the stock-harvest dynamics is described by 

the following equation: 

𝑋𝑋𝑡𝑡+1 = F(Xt) − 𝑄𝑄𝑡𝑡 (5) 

In (5), 𝐹𝐹(𝑋𝑋𝑡𝑡) is some appropriate, discrete-time growth function, and 𝑄𝑄𝑡𝑡 is the quota for period 

𝑡𝑡. If time is measured in years, 𝑄𝑄𝑡𝑡 is the annual quota. 

The model in (5) requires consideration of the sequence of events. In (5), growth occurs 

before harvest takes place. Another way to view this sequencing is in terms of the observation 

time; the stock level is observed (measured) after each harvesting event. If the sequence of 

events was the other way around, if harvest takes place before growth, or equivalently, if the 

stock level is observed after each growth period, the right-hand side of (5) would be formulated 

as �̂�𝐹(𝑋𝑋𝑡𝑡 − 𝑄𝑄𝑡𝑡), (�̂�𝐹 may have to differ from 𝐹𝐹). Obviously, when the stock level is observed does 

not change the dynamics although a different growth function may be needed, but it affects the 

problem formulation. That is, the sequence of events impacts how the decision variable 𝑄𝑄𝑡𝑡 

enters the dynamic equation. Generally, sequencing and the implicit assumption that growth 

occurs without harvest and no growth occurs during harvest make discrete time models 

somewhat unsuited to describe the dynamics of some fish stocks. Examples include stocks that 

are exploited throughout the year. Sequencing may also impact how discounting impacts 

revenues and costs. On the other hand, separation of growth and harvesting periods is a reality 

in, for example, many salmon fisheries and other fisheries that for example target spawning 

migrations. Furthermore, discrete time models readily support data from both biological and 

economic systems that tend to be collected at regular intervals. 
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 In models formulated in continuous time, one typically does not worry about the 

sequence of events. The canonical stock-harvest dynamics is as follows: 
d𝑥𝑥
d𝑡𝑡 = 𝑓𝑓(𝑥𝑥) − 𝑢𝑢 (6) 

In (6), 𝑓𝑓(𝑥𝑥) is some continuous-time growth function, and 𝑢𝑢 is the instantaneous harvest rate. 

That is, in continuous time, growth and harvest happens simultaneously. Continuous time 

models are usually subject to regularity assumptions about differentiability. Notably, such 

assumptions are made for analytic convenience and are not necessarily reflections of physical 

reality. Admittedly, one may find it difficult to argue against a reality that is continuous and 

somewhat smooth. 

The harvest rate 𝑢𝑢, which is the decision variable, is not the relevant quota, however. 

The harvest rate is a flow variable; the quota is a stock variable. To derive the associated, say 

annual, quota, the harvest rate should be integrated over the appropriate time interval. Further, 

the distribution of harvest in time should follow the harvest rate, something that make 

continuous time models somewhat unsuited for provisioning of management advice. When 

fishing quotas are issued, fishers are usually free to fish when they want in a given season. As 

shown by Huang and Smith (2014), this freedom may be a source of inefficiency in fisheries 

(see also Smith, 2012 and references therein). 

To illustrate the difference between a harvest rate and the resulting, appropriate quota, 

consider the following management problem: 

max
𝑢𝑢≥0

∫ e−δtΠ(𝑥𝑥, 𝑢𝑢)d𝑡𝑡
∞

0
 (7) 

The stock variable 𝑥𝑥 is subject to the dynamic constraint (6); let 𝑓𝑓(𝑥𝑥) be the logistic (1). The 

discount rate 𝛿𝛿 is set to 2%. The objective function is given by: 

Π(𝑥𝑥, 𝑢𝑢) = (𝑝𝑝 − 𝑐𝑐1𝑢𝑢) ⋅ 𝑢𝑢 − 𝑐𝑐2𝑢𝑢/𝑥𝑥 (8) 

The objective is nonlinear in 𝑢𝑢 such that the solution is not bang-bang, and there is a stock effect 

on costs. Notably, stock effects on costs or in the objective function generally are not trivial to 

accommodate for in discrete time models, and may require auxiliary assumptions (see Clark, 

1990). Parameter values for the results below are listed in table A1 in the appendix. 

Time is assumed measured in years such that the annual quota 𝑞𝑞(𝑥𝑥0), where 

𝑥𝑥(𝑡𝑡 = 0) = 𝑥𝑥0 denotes the stock level at the start of the year, is given as follows: 

𝑞𝑞(𝑥𝑥0) = ∫ 𝑢𝑢(𝑥𝑥)d𝑡𝑡
1

0
 (9) 
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Figure 4 plots the optimal harvest rate (blue curve) and the associated quota (red curve) as 

functions of the stock level. Because of the stock effect, the optimal harvest rate is zero for low 

stock levels (approximately 𝑥𝑥 < 0.2). Further, the optimal harvest rate increases with the stock 

level and the optimal steady state (𝑥𝑥∗) is somewhere near 𝑥𝑥 = 0.75. To the left of the steady 

state, the stock will increase over time because the growth is higher than the harvest rate. Thus, 

for an initial stock level below the steady state, 𝑥𝑥0 < 𝑥𝑥∗, the harvest rate will increase over time 

and the annual quota is higher than the initial harvest rate, 𝑞𝑞(𝑥𝑥0) > 𝑢𝑢(𝑥𝑥0). This effect is quite 

dramatic at low stock levels, and the annual quota is nonzero for stock level as small as 

𝑥𝑥 = 0.05. (The numerical values provided here are obviously a consequence of the chosen 

parameter values and are meant only for illustration.) For initial stock levels above the steady 

state, 𝑥𝑥0 > 𝑥𝑥∗, we have the reverse situation such that the annual quota is below the initial 

harvest rate, 𝑞𝑞(𝑥𝑥0) < 𝑢𝑢(𝑥𝑥0). 

 
Figure 4: Optimal harvest rate (blue curve), associated annual quota (red curve), logistic 

growth law (blue dashed curve), and annual growth (red dashed curve). 
 

The discrepancy between the harvest rate and the associated quota can be illustrated also 

for the stochastic model where the stock dynamics is stochastic. For example: 

d𝑥𝑥 = (𝑓𝑓(𝑥𝑥) − 𝑢𝑢)d𝑡𝑡 + 𝜎𝜎𝑥𝑥d𝐵𝐵 (10) 

In (10), d𝐵𝐵 are Brownian increments. Figure A1 in the appendix relates results corresponding 

to Figure 4. 

 The results in Figure 4 are generic and may be formulated in a proposition. The 

proposition concerns stock levels below the equilibrium. A similar proposition could be 

formulated concerning stock levels above the equilibrium. 
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Proposition: If, over some given stock level interval (𝑥𝑥0, 𝑥𝑥1), the harvest rate is increasing as a 

function of the stock level, 𝑢𝑢′(𝑥𝑥) ≥ 0, while below natural growth, 𝑢𝑢(𝑥𝑥) < 𝑓𝑓(𝑥𝑥), the associated 

quota is higher than the harvest rate, 𝑞𝑞(𝑥𝑥0) ≥ 𝑢𝑢(𝑥𝑥0). 
 

A formal proof is beyond my ambition in this essay but seems obvious enough.  

 Figure 4 suggests a seeming paradox because the annual quota intersects the annual 

growth curve (red dashed curve) at a different stock level than the optimal steady state (where 

the optimal harvest rate intersects the logistic growth curve). One may be lead to believe that 

the annual consideration indicates a different steady state than the continuous time model. This 

conclusion is erroneous because the annual growth curve cannot be compared directly to the 

quota curve. The annual growth curve relates the integration of the logistic over a time unit, 

that is, ∫ 𝑓𝑓(𝑥𝑥)d𝑡𝑡1
0 . The annual growth, in other words, is the growth of the undisturbed 

(unfished) system. 

The annual growth curve is nevertheless of interest because it illustrates differences 

between discrete time and continuous time considerations. Note that in a discrete time setup, 

growth is undisturbed, but in a continuous time system, growth and harvest happens 

simultaneously. The continuous time stock level 𝑥𝑥 can thus be kept, for example, at the optimal 

steady state indefinitely and provide for annual quotas given by 𝑓𝑓(𝑥𝑥∗). Alternatively, the stock 

level could be kept at the maximum sustainable yield level and provide higher annual quotas 

(under a different harvest rate profile, obviously). Figure 4 shows that instantaneous growth 

𝑓𝑓(𝑥𝑥) has a higher maximum than the annual (undisturbed) growth, because the annual growth 

curve integrates over a changing stock level. This is a general fact of discrete time models, that 

with shorter time steps, where continuous time is the limit, a higher per time production is 

achievable. Kvamsdal et al. (2017) refers to this effect as actualization of the growth rate. 

 

4 Concluding remarks 
It matters what type of model one uses in bioeconomic analysis, and the model type should be 

adapted to the task or research question at hand. Much of what I have highlighted above may 

be known to the majority of fisheries economists, but my reading of the academic literature has 

uncovered repeated examples of what one may call bad practice. I am, for example, not aware 

of any paper that calculates proper annual quotas from a continuous time model, but there are 

papers that compare an optimal harvest rate with quota levels. I thus find it pertinent to write 

this essay. 
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 A well-known feature that should alert fisheries economists to the significance of model 

type, is that in a continuous time model of an open-access fishery, rents are completely 

dissipated. In a discrete time model, however, inframarginal rents may be positive (see Smith, 

2012). The latter is, for example, found by Grainger and Costello (2016) using a discrete time 

model. Okonkwo and Quaas (2020) find, apparently in contrast, that all fishers have the same 

outcome in a continuous time model equilibrium, that is, there are no inframarginal rents. There 

are many different aspects to these studies that may explain the differences, but the different 

modeling frameworks should alert us that the results may not be directly comparable, or to the 

possibility that the different results may arise from model type features. 

 Gyllenberg et al. (1997) conclude that population dynamics may be best described by 

hybrid population models with both continuous and discrete elements. While such an approach 

may require a more extensive framework, it may help economists avoid some of the pitfalls and 

inconsistencies discussed above. 

 There are textbooks that touche upon some of the issues discussed above. To my 

knowledge, Clark (1990) remains the definitive account. He develops much basic theory in a 

continuous time framework before deriving several analogous results in a discrete time setup. 

He also discusses various features, such as delay or seasonal effects, that are more readily 

effectuated in discrete models. Further topics are cyclical dynamics in discrete models and an 

analysis in terms of the slope. The question of corresponding models is seemingly not treated, 

however, and neither is the point that the associated quota differs from a continuous time harvest 

rate, although he distinguishes these concepts throughout the text. In my humble view, authors 

of future fisheries economics textbooks would be wise to include these topics. 
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Appendix 
Table A1: Some parameter values 

Parameter Value Parameter Value 

𝑟𝑟 2 𝑝𝑝 1 

𝑘𝑘 1 𝑐𝑐1 1 

𝜎𝜎 0.1 𝑐𝑐2 0.1 

 

 
Figure A1: Optimal harvest rate (blue curve), associated annual quota (red curve) plus 

and minus two standard deviations (thin dashed curves), logistic growth law (blue dashed 
curve), and annual growth (red dashed curve) plus and minus two standard deviations  

(thin dashed curves). 
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In the context of bioeconomic modeling, I discuss issues related to the use of discrete 
and continuous time. Using discrete or continuous time for a given modeling problem 
is not necessarily a matter of preference, but has methodological consequences 
that should be observed. These include differences in dynamic behavior and the 
construction of corresponding models for transfer, between models of different type, 
of functional forms, parameter values, or results. Further, I discuss properties of quota 
advice based upon a continuous time model. 


