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Abstract 
A discrete-time stochastic bioeconomic model is developed and used to analyse the North 
Sea herring fishery under alternative management regimes. The analysis focuses on how 
catches and harvesting policies change with the price of herring. Two production 
functions are used to explain the harvesting process. At small stock levels, the choice of 
production function is seen to be critical for the model’s predictions. Feedback policies 
are found for the optimally managed fishery. The management of North Sea herring, after 
a moratorium was lifted in 1981, is evaluated with respect to effects on supply, stock 
level, and fishing effort. Under optimal management, the results imply that the fishery 
should have stayed closed until 1983, a conclusion that is independent of harvesting 
relationship used. Whether open access leads to total depletion or not is seen to depend 
on the choice of production function. 
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1. Introduction 
In most bioeconomic models, price is assumed fixed. This is a simplifying assumption 

that is often made when analysing the optimal exploitation of a renewable resource. The 

aim of this paper is to investigate and quantify how the harvesting of fish varies with 

price under different regulations. Such knowledge is important with respect to analysis of 

the fishery under optimal management, open access, and other regulatory regimes. 

Nøstbakken and Bjørndal (2003) derived and estimated supply curves for the North Sea 

herring fishery. Apart from this, there are few empirical applications of supply functions 

in the literature. In Nøstbakken and Bjørndal’s analysis, a deterministic bioeconomic 

model was used. While the deterministic case offers some useful benchmarks, there are 

many sources of uncertainty that influence real-world fisheries. In this paper, a stochastic 

bioeconomic model will be used to analyse the North Sea herring fishery under different 

management regimes. The current analysis will, to some degree, be an extension of the 

work in Nøstbakken and Bjørndal (2003). 

 

Two different production functions will be used to explain the harvesting of North Sea 

herring. While the analysis will show that the difference between the two under optimal 

management is small, the choice of the harvesting relationship has big implications for 

the predictions made for the fishery under open access. For the open-access case, we find 

that the choice of production function is crucial for predicted harvest when the stock level 

is low, even though the two production functions give similar predictions for higher stock 

levels. 

 

The optimal management of North Sea herring was analysed by Bjørndal (1987, 1988). 

His analyses are based on deterministic models of the fishery. By including uncertainty in 

the bioeconomic model, we might get further insight into the optimal management of a 

pelagic fishery such as that for the North Sea herring. In our stochastic setting, we will 

find feedback policies for the optimally managed fishery. Optimal feedback policies will 

depend on the stock level, but also on the price of herring. In an attempt to evaluate how 

efficient the management of the North Sea herring has been, the optimal feedback 

policies will be applied to the fishery for the period 1981-2001. 
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The paper is organised as follows. In the next section, a description of the North Sea 

herring fishery will be given, and a bioeconomic model will be presented and estimated. 

In section 3, numerical analyses are undertaken. The final section summarises and 

concludes. 

 

2. Bioeconomic Model and Empirical Analysis 

The first part of this section gives a short overview of the North Sea herring fishery. The 

second part presents the bioeconomic model, while parameter values for the model are 

estimated in the third part. 

 

2.1 The North Sea herring Fishery1 

The North Sea autumn spawning herring (Clupea harengus) is a pelagic stock that lives 

on plankton. The stock was severely depleted in the 1960s and 1970s due to overfishing 

under an open-access regime combined with the development of very effective fish-

finding technology (Bjørndal 1988). In 1977, the fishery was closed to allow the stock to 

recover. Since the moratorium was lifted, regulations have been in effect. Nevertheless, 

in the mid-1990s the stock once again was below safe biological limits,2 and in 1996 the 

total quota was reduced to save the stock from collapse. To rebuild the stock, the quotas 

have been relatively small from 1996 onwards. Recent stock estimates show that it has 

been rebuilt above the level that guarantees good recruitment (ICES 2003). While the 

total quota was held constant from 1999 to 2002, the quota increased with about 40 

percent from 2002 to 2003.  

 

After the introduction of extended fisheries jurisdiction (EFJ), the North Sea herring has 

been considered a common resource between Norway and the European Union (EU). In 

                                                   
1 This section is largely based on Nøstbakken and Bjørndal (2003). 
2 According to the International Council for the Exploration of the Sea, the minimum biological acceptable 

level is a spawning stock of 800,000 tonnes for the North Sea herring stock.  
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December 1997, the parties agreed on a management scheme for the stock, the EU-

Norway agreement, specifying stock objectives and how to set catch quotas. This 

agreement has been in force since 1 January 1998. According to the EU-Norway 

agreement, the total quota for the directed fishery shall be allocated between the two 

parties with 29% to Norway and 71% to the EU. In addition, the EU gets the entire 

bycatch quota. 

 

2.2 The Model 

Reed’s (1979) stochastic stock-recruitment model is used. The reasons for this are that it 

is an aggregated model, and that uncertainty is included in a way that makes the model 

tractable. The Reed (1979) model can be written as follows: 

 ( )1 1t t tX z G S+ +=   (1) 

 t t tS X Y= − , (2) 

where tX  is the total biomass at the beginning of period t , tS  is escapement, and tY  is 

harvest. 1tz +  are independent and identically distributed random variables with mean one 

and constant variance, observed at the beginning of period 1t + . ( )tG S  is a growth 

function.  

 

1tz +  can be thought of as environmental shocks that occur between last period’s harvest 

and the current period’s recruitment. This means that after observing the random variable 

in one period, one knows the current period’s recruitment level with certainty. The 

fishery manager can thus set the quota at the beginning of every period, after the 

uncertainty has been revealed. In most real-world fisheries, fisheries managers do not 

know the exact stock level when setting quotas. Clark and Kirkwood (1986) deal with 

this by modelling a fishery with a model similar to Reed’s, but where the uncertainty is 

revealed after the harvest level has been determined. With this specification, they show 

that the optimal harvesting policy is different from the optimal policy in the Reed model. 

Weitzman (2002) also uses a model similar to Reed’s, but where regulatory decisions are 
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made before the period’s recruitment is known. He uses his model to compare different 

management instruments. 

 

The Reed model seems to give a reasonable representation of the growth in the North Sea 

herring stock, as we shall see in the next section where the empirical analysis is 

described. However, as we noted above, the Reed model assumes that uncertainty is 

revealed before harvesting policies are set. This is a drawback with this model 

specification, because the managers do not know the exact level of the North Sea herring 

stock when setting quotas. The advantage with using Reed’s model is that it is much 

more tractable than, for example, a specification similar to Clark and Kirkwood’s (1986). 

 

Further, it is assumed that harvest in period t  is given by an industry production function: 

 ( ),t t tY H K X=  (3) 

This function relates harvest, tY , to effort, tK , and stock size, tX . According to Bjørndal 

and Conrad (1987), search for schools is of predominant importance in a fishery on a 

schooling species like herring. Thus, in such fisheries the number of participating vessels 

may be an appropriate measure of effort, an assumption that will be made throughout this 

paper. 

 

By assuming a constant cost per unit effort, the net revenue for the industry can be 

written as: 

 t t tpY cKπ = − , (4) 

where p  is the price per unit of harvest and c  is the unit cost per vessel per season.  

 

Production Functions and Optimal Harvest 

Two forms for the aggregate production function in equation (3) will be considered, the 

Spence (Spence 1974) and the Cobb-Douglas production functions. In this section, these 

relationships and their optimal feedback policies are presented.  
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In the Reed (1979) paper, the Spence harvesting function is used: 

 ( )1 tqK
t tY X e−= − , (5) 

where 0q >  is a catchability coefficient. We see that t tY X→  as tK →∞  and it is thus 

very difficult to harvest the stock to total extinction in this model. 

 

The variable cost per unit of fish caught at each point in time can be written as:3 

 ( ) ( ) ( ) ( ) ( ), ln ln ln lnt t t t t t t

c c
C C X Y X X Y X S

q q
⎡ ⎤ ⎡ ⎤= = − − = −⎣ ⎦ ⎣ ⎦ . (6) 

Net revenue is thus:  

 ( ) ( )ln lnt t t t

c
pY X S

q
π ⎡ ⎤= − −⎣ ⎦ . (7) 

As Reed (1979) noted, this can be written as an additive separable function of the state 

variable, X , and the control variable, S . We then have ( ) ( )t t tN X N Sπ = − , where 

( ) ln
c

N m pm m
q

= − . 

 

In an optimally regulated fishery, we assume that a sole owner or a social planner, whose 

objective is to maximise the expected value of discounted net revenues from the fishery, 

manages the fish stock. He thus faces the following maximisation problem: 

 ( ) ( ){ }0
{ }

0

max
t

T
t

t t
S

t

E N X N Sρ
=

⎡ ⎤−⎢ ⎥⎣ ⎦
∑  (8) 

subject to (1), (2), and 0X  given. ( )1 1ρ δ= +  is the discount factor, and δ  is the 

discount rate. The maximisation problem can be solved using stochastic dynamic 

programming. It can be shown that the optimal harvest policy is a constant-escapement 

policy (Reed 1979), where the optimal escapement level must maximise the following 

equation:4 

                                                   

3 ( )1 tqK
t tY X e−= −  ⇒ ( )1tqK

t t t t te Y X X Y X− = − = −  ⇒ ( ) ( ) ( )1 ln lnt t t tK q X X Y⎡ ⎤= − −⎣ ⎦  

4 See Conrad (2002) for the derivation of this expression. 
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 ( ) ( ) ( )( )zW S E N zG S N Sρ ⎡ ⎤= −⎣ ⎦  (9) 

This equation can be solved numerically for the optimal escapement level, S∗ . The 

optimal policy can be expressed as: 

 
( )

0

t t
t

X S if X S
Y

otherwise

∗ ∗⎧ − >⎪= ⎨
⎪⎩

 (10) 

 

 

Let us now turn to the Cobb-Douglas production function, which can be expressed as:  

 b g
t t tY aK X=  (11) 

The parameter a  in this relationship represents the efficiency of the fishing fleet. The 

parameters b  and g  are the output elasticity of stock size and effort, respectively. 

Because of the herrings’ schooling behaviour, harvesting can be viable at very low stock 

levels. The parameter estimate of g  is therefore expected to be less than one. 

 

As opposed to the Spence function, effort does not have to approach infinity as t tY X→  

for the Cobb-Douglas production function. It is consequently possible to drive the stock 

to zero without having an infinite number of vessels participating in the fishery. 

  

Cost per unit of harvest and net revenue are given by equations (12) and (13): 

 

1

b
t

g
t

Y
C c

aX

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (12) 

 

1

b
t

t t g
t

Y
pY c

aX
π

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (13) 

 

In an optimally regulated fishery, the manager would want to maximise the expected 

value of discounted net revenues from the fishery. Unfortunately, it is not possible to 

express net revenue as a separable function of the state variable and the control variable 

when we use the Cobb-Douglas function. This means that we do not have a simple way 

of finding the optimal feedback policy for the fishery.  



 7 

 

We cannot solve the maximisation problem analytically and will instead search for an 

optimal feedback policy among possible policies. The feedback policy can be specified in 

an infinite number of ways and we do not know the form of the optimal policy. The 

current analysis will therefore be restricted to finding an optimal linear feedback policy, 

given by the following equation: 

 t tY Xα β= +  (14) 

In Pindyck’s (1984) continuous-time models, linear feedback policies emerge in three 

examples. Our search for optimal linear feedback policies thus seems fairly reasonable, 

although there might exist non-linear policies that would outperform the linear policies. 

 

Harvest in any year can for obvious reasons never exceed the total biomass. In most 

fisheries it is also impossible to have a negative harvest. We therefore add the restriction 

0 t tY X≤ ≤ , that must hold for all t . The upper boundary condition for tY  is not expected 

to be binding, since total extinction of a fish stock with an intrinsic growth rate as high as 

the herring’s is very seldom optimal. With these restrictions on tY , the optimal feedback 

policy we are searching for is not strictly linear.  

 

Vessel Dynamics 

In accordance with Gordon (1954), it will be assumed that vessel entry and exit under 

open access follows the sign and size of normalised net revenues per vessel. Fleet 

dynamics are assumed to occur according to the following equation: 

 1
t

t t
t

K K n
K

π
+ − = , (15) 

where 0n >  is an adjustment parameter. If net revenue per vessel is positive, effort will 

increase. If net revenue per vessel is negative, effort will decrease.  

 

In the optimally regulated fishery, we assume that the optimal number of vessels will 

participate in the fishery every year. Consequently, there will be no transition period if 

the optimal number of vessels changes from one season to the next. This is a simplifying 
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assumption that implies that vessels becoming redundant in the North Sea herring fishery 

immediately will be needed and employed in other fisheries. The question of optimal 

fleet size is more complicated and calls for a joint analysis of all fisheries in which the 

fishing fleet participates. Nevertheless, being relatively minor compared to other 

fisheries, the North Sea herring fishery’s influence on the optimal fleet size is modest. 

 

2.3 Empirical Analysis 

The empirical content of the model consists of the specification and estimation of the 

stock-recruitment function, and of the production and cost functions. 

 

Stock-Recruitment Function 

A specification of stock-recruitment corresponding to the deterministic part of equation 

(1) is given by the following logistic function:  

 ( )1 1 t
t t t

rS
X G S S r

L
+

⎛ ⎞= = + −⎜ ⎟⎝ ⎠
, (16) 

where r  and L  represent the intrinsic growth rate and carrying capacity of the stock, 

respectively (Clark 1990). This equation was estimated by nonlinear least squares using 

annual data on total biomass and harvest for the North Sea herring for the period 1960-

2002 obtained from the International Council for the Exploration of the Sea (ICES).5 

Parameter estimates are presented in Table 1. 

 

The Durbin-Watson statistic given in Table 1 indicates that first-order autocorrelation 

might be a problem, since the test rejects the null hypothesis of no first-order 

autocorrelation. The Breusch-Godfrey Lagrange multiplier test of autocorrelation of order 

P  was used to test the logistic equation for autocorrelation of order [ ]1,5P∈ . The null 

hypothesis of no autocorrelation was rejected for 1P =  (5 % significance level). For 

1P > , the null hypothesis could not be rejected. 
                                                   
5 The Gompertz and Ricker functional forms were also estimated. However, the logistic function resulted in 

the best fit and was therefore chosen. 
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Table 1.  Estimates of the Parameters of the Stock-Recruitment Function. 

Parameter 

Estimated 

Coefficient Standard Error t value 

NLS 

r  0.462 0.075 5.76 

L  6,677,528 1,549,773 4.31 

2 0.989R = ; 2. 0.988adj R = ; 1.319DW =  

OLS-Auto 

1 1 rβ = +  1.462 0.093 15.67 

2 r Lβ = −  88.09 10−− ⋅  83.14 10−⋅  -2.58 

0.462r = ; 5,713,479L =  

2 0.980R = ; 2. 0.979adj R = ; 2.060DW = ; 0.298ρ =  

 

 

Table 1 also presents the regression results from estimating the logistic function using the 

Cochrane-Orcutt transformation to correct for first-order autocorrelation. After the 

correction, the point estimate of the carrying capacity is smaller while the estimated 

growth rate is nearly unchanged. The Durbin Watson test statistic implies that there is no 

first-order autocorrelation after the transformation. In the remainder of the paper, we will 

use the parameter estimates corrected for autocorrelation. 

 

According to the regression results, the intrinsic growth rate of the biomass is 0.46r =  

and the carrying capacity of the environment is 5,713,480L =  tonnes. The escapement 

level that maximises annual sustainable harvest is thus 2,856,7402msy
LS = =  tonnes. 

The corresponding maximum sustainable yield and biomass are 660,3352
rLMSY = =  

tonnes and ( )( )2 3,517,0754msy
LX r= + =  tonnes.  
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Estimated growth functions for herring can be found in several papers. Bjørndal (1988) 

and Nøstbakken and Bjørndal (2003) estimate growth functions for North Sea herring 

using data for the period 1947-1981 and 1981-2001, respectively. Arnason, Magnusson, 

and Agnarsson (2000) estimate a growth function for Norwegian spring-spawning herring 

using data for the period 1950-1995. However, in these papers it is assumed that growth 

is determined by biomass, tX ,  not by escapement, tS , as in the model estimated here. 

Our estimate of intrinsic growth rate should therefore be somewhat smaller. The three 

papers mentioned above report intrinsic growth rates of 0.52 , 0.47 , and 0.53, 

respectively. Our estimate of intrinsic growth rate, as reported in Table 1, thus seems to 

be robust. In addition, all the estimated parameters presented in Table 1 are significant at 

a 5% significance level, and the estimated equation explains over 98% of the variation in 

the data. Modelling the growth as a function of escapement as opposed to biomass at the 

beginning of the period, seems to result in a higher adjusted 2R  when estimating 

recruitment in this fishery. Bjørndal’s (1988) estimate of carrying capacity for the North 

Sea herring is a spawning stock of 3.55  million tonnes, while Nøstbakken and Bjørndal 

(2003) reports a total stock of 5.27  million tonnes. In comparison, our estimate seems 

reasonable. 

 

The model assumes that the mean of 1tz +  is one. Unless otherwise stated we will make 

the additional assumptions that the variance of 1tz +  is 2 0.05zσ =  and that 1tz +  is log-

normally distributed.6 Ideally, we should estimate and use the statistical properties of 1tz +  

from the residuals from the regression of equation (16) in the analysis. With 

autocorrelated residuals, however, estimated z  values will not be independent and 

identically distributed (i.i.d.) as assumed in the Reed (1979) model. If the stochastic 

variable is not i.i.d., it is not possible to find an analytic solution to the optimisation 

problem. In this analysis we will therefore treat the z  values as i.i.d. The fact that the z  

values are correlated means, nonetheless, that knowing the value of z  in one period 

enables one to make better predictions about future z  values. The assumption that the 

                                                   
6 The lognormal distribution ensures that all z  values are non-negative.  
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stochastic variable is i.i.d. thus makes it more difficult for a social planner to optimise 

expected net revenues from the fishery than it would be in the case when the z  values are 

correlated. The net benefit from the fishery could therefore be higher under optimal 

management than what we find in the subsequent analysis by making this assumption 

about 1tz + . 

 

Vessel Dynamics, Production Functions, Costs, and Prices 

Bjørndal and Conrad (1987b) analyse capital dynamics in the North Sea herring fishery. 

They estimate several fleet-adjustment equations but unfortunately not equation (15). 

Data presented in Bjørndal and Conrad (1987, 1987b) are therefore used to estimate the 

adjustment parameter, n  in equation (15). This gives us a point estimate of 410n −= .7 

Unless otherwise stated, this estimate will be used in the analysis. 

 

Bjørndal and Conrad (1987) estimated four production functions based on data for 

Norwegian purse seine vessels in the North Sea herring fishery, 1963-1977. The two 

functions that best fit the data, along with Bjørndal and Conrad’s parameter estimates, are 

used in the current analysis.8 These are the Spence production function with 0.0011q = , 

and the Cobb-Douglas production function with 0.06157a = , 1.356b = , and 0.562g = . 

 

Following Nøstbakken and Bjørndal (2003), cost data for Norwegian purse seine vessels 

with cargo capacity 8,000  hectolitres and above is used in the analysis. Fixed costs are 

disregarded, since the vessels in question participate in several seasonal fisheries in 

addition to the North Sea herring fishery. This is appropriate, as the North Sea herring 

fishery is relatively minor compared to other fisheries and does not require any special 

                                                   

7 OLS estimation: 2.08t value− = , 2 0.250R = , 2. 0.192adj R = , and (1,14) 1.435DW = . 

8 Bjørndal and Conrad’s estimation was for a time period when the fishery was unregulated, and 

econometric conditions for estimating a production function were satisfied. This would not be the case for 

later periods, due to varying regulations of the fishery. The implication of using these parameters is that the 

efficiency of the fleet may be somewhat underestimated due to technological development. 
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equipment. The variable cost will not include costs associated with the crew, because 

crew remuneration represents a constant share of the vessel’s revenue. The income will, 

therefore, be adjusted by a factor that represents the boat owner’s share. The price used in 

the analysis is average price paid to the boat owners for North Sea herring, adjusted by a 

factor of 0.65, which represents the boat owner’s share of income. See Nøstbakken and 

Bjørndal (2003) for details on cost and price estimation. All prices and costs are in 

nominal NOK. For 2001, the adjusted average price is 2, 465  NOK/tonne, and variable 

cost per vessel is 1,189,565  NOK/year. A 6% discount rate is used in the analysis.  

  

3. The North Sea Herring Fishery 

In this part, the North Sea herring fishery is analysed by using the two production 

functions. In both cases, the open-access fishery and the optimally regulated fishery are 

considered. Stochastic simulations are used in the analysis. All simulations were 

programmed and run in MATLAB. 

 

3.1 Model 1: The Spence Production Function 

In the following section, the Spence harvesting relationship is used to analyse the 

optimally regulated and the open-access fishery. 

 

The Optimally Regulated Fishery 

By stochastic simulations, the optimal escapement level can be found for given price, 

cost, and discount factor. Figure 1 shows the relationship between optimal escapement 

level and price. The optimal escapement level is not very sensitive to changes in the 

variance of 1tz + . For low prices, the figure shows that there is no difference between the 

two curves that represent optimal escapement levels for 2 0.05zσ =  and 2 0.20zσ = . As 

price increases, the difference between the curves grows, but not very much. For price 

5p =  NOK/kg, the difference in optimal escapement level is about 136,000  tonnes. As 
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p→∞ , the optimal escapement level approaches 2.524  million tonnes ( 2 0.05zσ = ). The 

optimal escapement level is thus very insensitive to price changes for prices above 3p =  

NOK/kg. For prices below 0.2  NOK/kg, the escapement level is higher than the carrying 

capacity of the environment, L . Consequently, for prices less than 0.2  NOK/kg, there 

will be no harvesting. 

 

 

Figure 1. Optimal Escapement Level, Variance 2 0.05zσ =  (--) and 2 0.20zσ =  (c = 

1,189,565 NOK, 0.06δ = ). 

 

By simulating the optimal harvesting rules over a long time period, we can find the 

statistical distributions of tX , tY , etc. Figure 2 shows the average long-term levels of 

biomass and harvest for different prices with confidence intervals.9 For harvest, only the 

upper confidence limit can be seen for the reason that the lower level is below zero. The 

                                                   
9 A 66-percent confidence interval is shown in the figure, i.e., the mean plus or minus one standard 

deviation. 66-percent confidence intervals are used in the remainder of the paper unless otherwise stated. 
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figure shows that the confidence level seems to be fairly constant for different prices. It 

also shows that the relative variation in stock level is less than the variation in annual 

harvest. For prices above 2p =  NOK/kg, biomass is some 3 million tonnes and the 

corresponding harvest is close to 700,000  tonnes. The shape of the harvest curve in 

Figure 2b is very similar to Nøstbakken and Bjørndal’s (2003) discounted equilibrium 

supply curve for the North Sea herring fishery. 

 

 

Figure 2. Stock and Harvest with Confidence Intervals for Different Prices at Time 

t=100. 

 

The Open-Access Fishery 

Stochastic simulations of the open-access fishery are run for different prices. The 

carrying capacity of the environment, L , was used as the initial value for biomass, and 

the initial number of vessels was set to 120K = . As price approaches infinity, so does 

effort, and escapement 0S → . However, the simulation results show that the stock can 
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be severely depleted even at more realistic prices than p→∞ . Figure 3 and Figure 4 

show some of the results from 1,000N =  simulations of the fishery over 200T =  years.  

 

Figure 3 gives stock and catch dynamics with confidence intervals for price 2p = . The 

long-term equilibrium stock level for this price is about 710,000  tonnes with a 

corresponding annual catch of about 215,000  tonnes. The figure shows that there is 

overshooting and subsequently damped oscillation toward the equilibrium levels of 

biomass and harvest.  

 

 

Figure 3. Stock and Catch Dynamics with Confidence Intervals (c = 1,189,565 NOK, 

p=2 NOK/kg). 

 

The number of vessels in the fishery also oscillates toward the long-term equilibrium 

level, as can be seen in Figure 4a. If a different adjustment parameter had been used, the 

degree of overshoot would have been different (see Figure 4b, where 55 10n −= ⋅ ). With 

410n −= , as in Figure 4a, both biomass and catch are close to zero between 10t =  and 

25t = . In some of these periods, the biomass is under 20,000  tonnes, and the annual 

harvest is as low as about 5,000  tonnes. As mentioned earlier, the stock cannot be driven 
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to zero unless K →∞  when the Spence production function is used. This explains why 

the stock after a long time period starts growing again and subsequently stabilises at the 

open-access equilibrium level.  

 

 

Figure 4. Vessel Dynamics with Confidence Interval, Adjustment Parameter (a) 410n −=  

and (b) 55 10n −= ⋅  (c = 1,189,565 NOK, p = 2 NOK/kg). 

 

The dramatic initial increase in K  that can be seen in Figure 4a can also be explained by 

the initial values of biomass and number of vessels that were chosen. The small number 

of vessels that harvests from the relatively large stock of size L  in the first period earns 

very high net revenues. Since it was assumed that vessel dynamics follows the sign and 

size of the normalised net revenue per vessel, the subsequent increase in the number of 

vessels is very high. 

 

Figure 5 shows the distributions of X  and Y  at time 200T =  for different prices. For the 

stock, X , zero is within one standard deviation from the mean if the price is higher than 

1.7  NOK/kg. Although X  never reaches zero (unless p→∞ ), it gets so close that the 

stock virtually has gone extinct even for the prices shown in this figure. The harvest 
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curve, Y , can be regarded as a stochastic equivalent to the backward-bending open-

access supply curve described by Copes (1970) and estimated for the North Sea herring 

fishery by Nøstbakken and Bjørndal (2003).  

 

 

Figure 5. Stock and Harvest at Time t=200 with Confidence Intervals (c = 1,189,565 

NOK). 

 

3.2 Model 2: Cobb-Douglas Production Function 

The optimally regulated and the open-access fishery will now be analysed for the Cobb-

Douglas production function. 

 

The Optimal Linear Feedback Policy 

Optimal linear feedback policies (equation (14)) are approximated for different prices 

keeping other parameters constant, by stochastic simulations. These feedback rules are 
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then applied to the dynamic model of the North Sea herring fishery which are simulated 

1,000N =  times for 100T =  years. Initial biomass is set to L .  

 

If price is too low, i.e., less than about 0.1 NOK/kg, harvesting is not profitable at any 

stock level and both α  and β  in the linear feedback equation (14) are zero. However, for 

prices above this level, the optimal linear feedback seems to be rather insensitive to 

changes in price (and cost). The simulation results show that the optimal β  stays very 

close to 1, although it decreases with price. Optimal α  increases with price, but the 

relative change in α  is small. For price 2p = , the optimal linear feedback policy is 

approximately t-2,850,000+0.99XtY = . For positive values of tX , harvest will never 

equal total stock and extinction of the stock is therefore never optimal when 2p = . 

Recall from section 2.2 the “common sense” condition for harvest 0 t tY X≤ ≤ . We know 

the above feedback policy ensures that t tY X< . From the condition 0tY ≥  we thus get the 

following optimal (linear) feedback policy for the North Sea herring fishery ( 2p = ):  

 ( )t
0 if 2,880,000

-2,850,000+0.99X otherwise
t

t

X
Y

<⎧
= ⎨
⎩

 (17) 

 

Figure 6 shows the simulation results for price 2p =  based on the feedback policy given 

by equation (17). After a transition period, the mean values of biomass and harvest level 

out at about 3.5  million tonnes and 654,000  tonnes, respectively. These values are close 

to the maximum sustainable yield levels of biomass and harvest (cf. section 2.3). If we, 

however, look at the simulations separately, we see that the linear feedback rule does not 

result in a stable annual catch of 654,000  tonnes. Instead, the catch changes from zero in 

some periods to very high catches in other periods. The linear feedback rule thus appears 

to lead to pulse fishing in this case. This is illustrated in Figure 7, were stock and catch 

dynamics from one of the simulations are shown.  
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Figure 6. Stock and Catch Dynamics with Confidence Intervals (c = 1,189,565 NOK, p = 

2 NOK/kg, 0.06δ = ). 

 

 

 

Figure 7. Stock and Catch Dynamics from One Simulation (c = 1,189,565 NOK, p = 2 

NOK/kg, 0.06δ = ). 
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The Open-Access Fishery 

Stochastic simulations of the open-access fishery result in depletion of the fish stock in 

all the 1,000N =  simulations (before time 100T = ), given that price is above a 

minimum level that makes fishing viable in the first place. Initial biomass and number of 

vessels was set to L  and 120, respectively. Bjørndal and Conrad (1987) studied the 

dynamics of the North Sea herring fishery using a deterministic model and the same 

Cobb-Douglas production function as used here. They concluded that the likelihood of 

overshooting and possible extinction under open access is greater with discrete 

adjustments. In the model employed in this paper, we have a stochastic component in the 

recruitment function. This increases the likelihood of overshooting further compared to 

the deterministic case.  

 

Time of total extinction of the fish stock is shown in Figure 8a for different prices. If 

price is above 1.1 NOK/kg, it is very likely that the stock will go extinct within 30 years 

under an open-access regime. The variance in time of extinction is very small for prices 

above 1.2  NOK/kg. In these cases, the simulation results imply that the stock will go 

extinct after five to ten years. Figure 8b shows biomass at time 100T =  for different 

prices. This figure also shows that if price is 1.1 NOK/kg or higher it is highly unlikely 

that the stock will survive under open access.  

 

Time of extinction is influenced by the initial values for biomass and number of vessels 

that are used in the simulations. As in the open-access case for Model 1, there is a very 

large increase in number of vessels from the first to the second time period because of 

high net revenues in the first period resulting from the initial values of K  and X  that 

were used. However, the choice of initial values does not affect the conclusion that the 

stock eventually will go extinct under an open-access regime as long as price is above 1 

NOK/kg. 
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Figure 8. Open Access: Time of Extinction and Biomass at Time t=100 with Confidence 

Intervals (c = 1,189,565). 

 

3.3 The North Sea Herring Fishery 1981-2001 

In the following sections, Model 1 and Model 2 will be used to simulate harvesting from 

the North Sea herring fishery, 1981-2001, under open access and optimal management. 

Average prices and variable costs for these years obtained from the Norwegian 

Directorate of Fisheries, are used. The simulation results will be compared to the actual 

harvesting policies for the North Sea herring fishery. 

 

Open-Access Dynamics 

In this section the models 1 and 2 are used to simulate open-access dynamics of the North 

Sea herring fishery 1981-2001. Initial biomass in 1981 was, according to ICES, 

1,160,300 tonnes. Initial number of vessels is set to 120. 
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The simulation results from the 1,000N =  simulations show that for Model 2 (Cobb-

Douglas production function) the stock would go extinct after about 10 years (1990). The 

corresponding prediction when using Model 1 is, as expected, that the stock would not 

have gone extinct. Recall that for this model, price has to approach infinity for the stock 

to go extinct. For Model 1, we see that the number of vessels and harvest decrease 

steadily until the stock eventually starts increasing again. Full depletion is within one 

standard deviation from the average stock level from 1996 onwards. For Model 2, the 

same is true from 1988 onwards. 

 

Figure 9 shows open-access dynamics in terms of number of vessel and stock levels for 

the two models. By comparing vessel dynamics, we see that the number of vessels 

reaches its maximum in 1990 for Model 1 and in 1989 for Model 2. Until 1984-1985 the 

models appear to be somewhat similar. From this point onwards, however, the two 

models’ predictions are quite different. As can be seen in Figure 9, Model 1 and Model 2 

follow almost the same path with an increasing number of vessels and decreasing stock. 

The approximate change in number of vessels is from 400 to 550 in Model 1 and from 

440 to 600 in Model 2. The corresponding change in biomass is from 1,650  thousand 

tonnes to 640 and 160, respectively. While this change only takes four years in Model 2, 

the same process takes about six years in Model 1.  

 

To answer the question whether open access could lead to stock extinction, one would get 

very different conclusions depending on which model specification one uses. Both the 

Spence and the Cobb-Douglas functions fit the data. It is difficult to say which of the two 

models offers the best description of harvesting for the North Sea herring fishery. The 

fishery has not been unregulated since the 1970s.10 We therefore have no real 

observations to compare the simulation results to.  

 

 

                                                   
10 See Nøstbakken and Bjørndal (2003) on regulations of the North Sea herring fishery 1981-2001. 
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Figure 9. Open-Access Dynamics, Model 1 (♦) (Spence) and Model 2 (Cobb-Douglas), 

1981-2002. 

 

The choice of model (Cobb-Douglas or Spence production function) does not have a big 

impact on predictions if the stock level is not too low. In periods when the stock is at a 

very low level, however, the two models give very different predictions. The models’ 

predictions for periods when the stock is close to total extinction should therefore be 

evaluated when determining what production function to use when modelling the North 

Sea herring fishery. When the North Sea herring fishery was closed in 1977, the stock 

was at a very low level. It is possible that the moratorium saved the stock from going 

extinct as put forward by Bjørndal and Conrad (1987). This would suggest that the Cobb-

Douglas function best describes the fishery. However, since the stock never has gone 

extinct, it could very well be possible that the Spence production function gives the best 

description of harvesting in this fishery. 

 



 24 

Optimal Management 

We will now compare the performance of the optimal harvesting policies in terms of 

annual harvest, revenues, etc., to the actual harvesting policy in the North Sea herring 

fishery 1981-2001. To make this comparison fair, the size of the environmental shock in 

each period ( tz ) is calculated based on the estimated stock-recruitment function and 

actual stock levels: ( )1
ˆ

t t t t tz X X X G S −= = .  

 

In the previous sections, we found that the choice of harvesting relationship used in the 

bioeconomic model (Spence or Cobb-Douglas) was critical for the predicted open-access 

dynamics. This, however, does not seem to be important for determining optimal 

harvesting based on actual prices and costs in the fishery for the period 1981-2001. Both 

annual harvest and stock levels are almost identical between the two models, as can be 

seen in Figure 10. The actual harvest and stock, on the other hand, deviate from these 

optimal harvesting policies.  

 

According to both our models, optimal management implies that the moratorium should 

not have been lifted in 1981; the fishery should on the contrary have stayed closed until 

1983. This would have rebuilt the stock to a level of some three million tonnes. Both 

models 1 and 2 level out with a stock at about this level. Remember that the total biomass 

that corresponds to maximum sustainable yield is about 3.52  million tonnes according to 

our estimates. Optimal harvest would therefore have been close to the maximum 

sustainable yield.  

 

Harvest under the optimal management policies fluctuate significantly, with harvests as 

high as 1,160  thousand tonnes in 1987 and as low as 105 thousand tonnes in 1994. These 

fluctuations follow the fluctuations in z . For Model 1, the optimal escapement level 

changes some from year to year as prices and costs change. However, the environmental 

shocks explain most of the fluctuations in optimal harvest ( 1Y  and 2Y ) in Figure 10. 
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Figure 10. Optimal Policies, Models 1 (Spence) and 2 (Cobb-Douglas) Versus Actual 

Policy; Stock Levels 1981-2002 (top) and Annual Catches 1981-2001 (bottom), 

0.06δ = . 

 

In spite of the fact that total landings were above optimal harvesting levels in the early 

1980s, total biomass grew steadily until it reached 3.94  million tonnes in 1987. This is 

very close to the optimal stock size in 1987. One explanation for this rather large increase 

in actual biomass is the substantial positive environmental shocks in the early 1980s. 

From 1987 until 1996, the North Sea herring stock showed a declining trend. During this 

period the actual harvesting policy was undoubtedly suboptimal. From 1997 onwards, 

quotas have been small to allow the stock to grow. The stock in 2003 is about 4.32  
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million tonnes according to ICES. The stock has thus been allowed to grow to a level 

above the level that maximises net revenues from the fishery. 

 

Figure 11 shows sum of present value of net revenues from 1981 onwards for the two 

optimal harvesting policies and actual harvest.11 The two optimal harvesting policies 

derived from the bioeconomic model give almost the same net revenues, although the 

optimal escapement policy for the Spence production function gives marginally higher 

discounted net revenue (Model 1). The gap between the accumulated discounted revenue 

lines for the two optimal policies is not constant. It increases in some years and decreases 

in other years. This means that the constant escapement policy performs best in some 

periods, while the linear feedback policy is best in other periods.  
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Figure 11. Sum of Present Value of Revenues from 1981 Onwards. 

 

The actual policy has the highest net present value of revenues for the periods 1981 to 

1984 and 1981 to 1996. However, while the stock level under optimal management 

would have been 3.3-3.4  million tonnes in 1996, the stock level under the actual 
                                                   

11 The sum of present value of net revenues for year t  is defined as: ( )
1981

1
t

t s

t s
s

PV Rδ −

=

= +∑ , where sR  

is net revenue in year s , and δ  is the discount rate. 
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regulations was only 1.63  million tonnes. It is therefore not correct to say that the actual 

management (1981-1996) was better than the optimal harvesting policies presented here. 

Furthermore, for the whole period, 1981-2001, the two optimal harvesting policies clearly 

outperform the actual management policy. As can be seen in Figure 10, the actual stock 

level ( X ) equals the optimal stock levels ( 1X  and 2X ) in 2002. When comparing 

present value of revenues from 1981 to 2001, all the three policies; Model 1, Model 2, 

and actual, have the same initial stock in the first year and virtually the same escapement 

in the last year. Comparing policies over this period should therefore be reasonable. 

 

The optimal policy for Model 2 (Cobb-Douglas) is, as discussed earlier, the optimal 

feedback policy among the linear feedback policies. The linear feedback policy can be 

the best of all possible feedback policies. There might, however, be non-linear feedback 

policies that outperform the optimal linear feedback policy. Nevertheless, the fact that the 

linear feedback policy gives almost the same results as the optimal escapement policy 

(Model 1) indicates that a linear feedback probably is close to the optimal policy.  

 

In this section we have seen that the difference in optimal annual harvest levels is very 

small when modelling the North Sea herring fishery with a Spence production function 

compared to a Cobb-Douglas production function. This result is contrary to what we 

found when analysing open-access dynamics. The fact that the two harvesting 

relationships give so similar recommendations for optimal harvesting of North Sea 

herring strengthens the robustness of these policies. 

 

4. Summery and Conclusions 

In this paper, harvesting or supply of North Sea herring has been analysed. A stochastic 

model has been used. When looking at stock-recruitment data for the North Sea herring 

fishery, it is obvious that there are fluctuations that cannot be explained in the standard 

deterministic bioeconomic fisheries models. These fluctuations have been treated as 

environmental shocks that occur after harvesting in one period, but before determining 

quotas in the next period. 
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Two different production functions have been used in the analysis. The long-term supply 

in an open-access fishery was seen to be positive for the Spence production function 

given that price is high enough for fishing to be viable. We found that the corresponding 

result for the Cobb-Douglas production function was total extinction of the fish stock and 

consequently no harvesting. Herring prices are and have been more than high enough for 

the stock to go extinct (Model 2: Cobb-Douglas) if the fishery is left unregulated. 

Although the results in terms of long-term supply are very different between the two 

models, predicted supply in periods when biomass is not close to extinction was found to 

be quite similar between the models.  

 

In an optimally regulated fishery, the Spence production function leads to a constant-

escapement rule as proved by Reed (1979). The optimal escapement level was seen to 

decrease with price. For the model based on the Cobb-Douglas production function, the 

analysis was limited to finding optimal linear feedback policies for the fishery. We found 

that the linear feedback rule can lead to pulse fishing. The optimal policies for the two 

harvesting functions were seen to be very similar when applying them to the North Sea 

herring fishery, 1981-2001. This indicates that the optimal feedback policy probably is 

not very different from our linear feedback rule. This result also confirms that as long as 

the stock is not close to total extinction the difference between the two models in terms of 

expected annual harvest etc. is small. 

 

The North Sea herring fishery was closed in 1977 to allow the stock to recover after 

being severely depleted in the 1960s and 1970s. The moratorium was lifted in 1981 in the 

southern part of the North Sea and in 1983 in the northern part. According to our 

analysis, optimal management of the North Sea herring would have implied that the 

fishery should have stayed totally closed until 1983. This conclusion is independent of 

the choice of production function (Cobb-Douglas or Spence). 

 

Our analysis confirms the conclusion made in Nøstbakken and Bjørndal (2003) that 

different regulations can have a substantial impact on the supply of North Sea herring. 
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The difference in long-term expected supply between open access and optimal 

management depends on the harvesting function used, but is nevertheless considerable. 

Both for the Spence and the Cobb-Douglas function, optimal management results in 

expected annual landings close to the maximum sustainable yield of 660 thousand tonnes. 

Under open access, the long term equilibrium stock and harvest can be zero (Cobb-

Douglas) or close to zero (Spence). These results are very similar to Nøstbakken and 

Bjørndal’s (2003) results for the deterministic case. 

 
This paper represents a continuation of the work in Nøstbakken and Bjørndal (2003). The 

current analysis can be extended in several ways. One possibility would be to introduce 

measurement error in the stock estimates (cf. Clark and Kirkwood 1986). This would also 

allow for an analysis of optimal management instruments (cf. Weitzman 2002), and an 

analysis of how different management instruments could affect the supply of herring. 

Another possibility would be to explore implications for optimal management of having 

autocorrelated instead of independent and identically distributed environmental shocks. 

The analysis could be extended further by combining the supply curves with estimations 

of demand curves in order to study the market for North Sea herring. 
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