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Abstract 
 

 
This paper analyzes the accounting rate of return assuming expected cash flow is linearly 

decreasing over time. An interval estimate for the rate of return is obtained using two 

different depreciation plans. The paper derives conditions under which the expected interval 

estimate will contain the expected return on investment (internal rate of return). The 

conditions hold for a single investment project and for an arbitrary collection of projects (a 

firm). Accounting rates of return are analyzed using a model with explicit cash flow 

uncertainty. If return measures are interpreted as estimates of expected return on investment, 

they will be subject to random errors as well as biases caused by accounting policies. The 

ideas of the paper are illustrated using case study data. 



 1 

1. Introduction 

 

The rate of return on capital invested in a commercial enterprise is potentially relevant 

information under different circumstances. Equity owners may find rates of return useful 

measures of management performance. Financial analysts may find it to be relevant inputs in 

their valuation models. Economists have been known to use the rate of return as a gauge of 

market competitiveness. They are also frequently used in social science research involving 

business firms. 

 

The accounting rate of return is a periodic measure of the return on investment (the internal 

rate of return). Accounting rates of return are calculated using transactions based accrual 

accounting. Neither fair value accounting, nor cash flow accounting is directly relevant at 

least not in general.1 It is well known that there exist accruals that will make the accounting 

rate of return equal to the return on investment in every period under quite general conditions. 

On the other hand it is equally well known that the accounting rate of return is very sensitive 

with respect to the accrual policy. If, for example, linear depreciation is chosen for a T-period 

project with constant cash flows, the accounting rate of return will increase T-fold over the 

lifetime of the project. 

 

Theory provides valuable insights into the measurement process. Using steady state theory 

Stauffer (1972) and others have derived relationships between growth rates, accounting 

policies and biases in the accounting rate of return. Although few firms may be in steady 

state, strictly speaking, the theory may still provide useful insights of a qualitative nature. A 

mature firm using a conservative accrual policy will, for example, almost certainly report 

accounting rates of return that overestimates the true return. Steady state theory also teaches 

caution; increasing “sample size” does not necessarily make the bias go away or even reduce 

it. In steady state a firm may report biased rates of return forever. 

 

The potential biases involved have led some observers to give up on the accounting rates of 

return as reliable return measures (see Fisher and McGowan (1983)). Others see the problems 

as one of making the available data speak by devising more effective estimation methods 

Edwards et. al.(1987) and Peasnell(1982)). This paper adopts the latter view. Notwithstanding 

its considerable accomplishments, existing theory is limited by the steady state assumption 

and does not in any case provide much precise information about the magnitude of the biases.  

This paper attempts to extend the theory of accounting rates of return in three different 

directions. First of all the effects of imposing restrictions on the cash flow vector rather than 

                                                 
1 Hill(1979) argues that cash flow based measures may be preferable in a second best world. 
Salamon(1985) shows that cash flow data may be used to calculate returns without accrual accounting. 
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the composition of the investment portfolio will be explored. Specifically it will be assumed 

that the cash flow vector generated by investments is declining linearly over time. While this 

assumption may not necessarily be a better approximation to reality than the steady state 

assumption, it extends existing theory in a different direction. Secondly, this paper explores 

the possibility of calculating two rates of return using different accrual policies. The objective 

is to estimate upper and lower bounds for the return on investment, which will provide 

indications of the magnitude of the biases involved. 

 

The third extension of the theory is conceptual in nature. Existing theory does not explicitly 

acknowledge uncertainty. Here uncertainty is introduced by first of all reinterpreting the 

return concepts. Received theory may be said to address the relationship between the 

expected accounting rate of return and the expected return on investment. Secondly, random 

cash flows, taking the form of unexpected windfalls, are introduced, and the effects of accrual 

policies on return measures under such condition, are tentatively explored. 

 

The paper is organized in the following way: In section 2 the model is presented, and the 

existing theory is briefly reviewed. In section 3 the relationship between the expected 

accounting return and the expected return on investment is explored assuming linearly 

decreasing cash flows. Conditions under which a dual set of return measures may be used to 

construct bounds on the expected return on investment are derived. Section 4 introduces the 

actual accounting rates of return and their relationship to expected returns conditional on the 

choice of accounting policies. Section 5 briefly summarizes a case study implementing some 

of the ideas introduced in this paper. The case study also serves as an illustration. Section 6 

provides concluding remarks. 

 

 

2.  The Model 

 

The following notation will be used: An amount K is invested at time 0 (end of period 0). An 

investment generates a vector of expected end of period cash flows c = (c1, c2, …., cT) per 

dollar invested. T will be referred to as the life of the project. The discount factor that makes 

the present value of the cash flow vector equal to 1, will be referred to as the (expected) 

internal rate of return and denoted r2. Earnings measurement involves an accrual vector a = 

(a0, a1,. aT). a0 is equal to –1 if the investment cost is capitalized in full. a1, …. aT is referred to 

as the depreciation plan (per dollar invested). The accrual vector always satisfies the 

following condition: 

                                                 
2 r is not equal to the expectation of the ex post (realized) rate of  return. 
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The start of period book value Bt per dollar invested and the expected accounting rate of 

return ρ(t) at time t, are defined as follows: 
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There is of course a one-to-one correspondence between the accrual vector and the sequence 

of book values, making it possible to derive the accrual vector from book values. It is well 

known that there exist a unique accrual vector with the property that a0 = -1 and ρ(t) = r for all 

t. This vector, usually called IRR-depreciation, may be defined by the sequence of book 

values as follows: 

 

(1) ∑
−

=
+

+

+
=

tT

j
j

jt
t r

c
B

0
1

*

)1(
)(c  

 

Two specific depreciation plans (both independent of the cash flow vector) will be used. The 

linear method (LIN) and the annuity method with some interest rate i (ANN(i)) are identified 

by superscripts L and A respectively. 
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The annuity method is thus really a family of depreciation plans indexed by i. It is easy to 

show that the linear plan is actually a member of the annuity family with i = 0. This paper will 

focus on the case of i equal to r (in addition to i = 0). When the index i is dropped, it is 
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understood that i = r. The associated rates of return are denoted ρt
A and ρt

L (or ρt
i if it is 

necessary to indicate which value of i is used).  

 

It is possible to define an incomplete ordering of depreciation plans, with book values B and 

B’ respectively, called “conservatism” as follows, 

 

 B is more conservative than B’ if Bt • B t’ for all t 

 

It is easy to show that within the annuity family conservatism is increasing in the index i. 

Linear depreciation is the most conservative member (if negative values of i are excluded). 

 

A firm is a collection of investment projects of different vintages. Investments are assumed to 

have identical cash flow vectors. The investment profile is described by the vector (K-T, K-(T-

1), … , K0). K0 is the amount invested at the end of the current period, and K-T is the amount 

invested in the oldest vintage (being retired at the end of the current period). Assuming a0 = -

1, the expected accounting rate of return for a firm is a weighted sum of the returns on 

currently active projects: 
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To study firm rates of return, steady state with growth rate g is usually assumed. Then the 

investment profile is characterized by the following relations: K-t = K-(t+1)(1+g) for t = 1,…T-

1). A celebrated theorem due to Stauffer, 1972, derives the expected rates of return in steady 

state. The following discrete time expression of firm returns holds for arbitrary accrual 

vectors (as long as a0 = -1): 
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To use this relationship to calculate returns it is necessary to know c, which is not observable3. 

The expression may also be used to derive general relationships between r, ρ, g and the 

depreciation plan (via A(g)). Since C(r) = 1, g = r implies ρ = g = r. Differentiating with 

respect to A keeping g fixed, it is readily apparent that ρ will increase in conservatism if g < r, 

and vice versa. Since IRR-depreciation always produces ρ  =  r, ρ is close to r if g is close to r 

or a is close to IRR-depreciation. 

 

Restricting attention to steady state is not really satisfactory. Usually it is not clear whether a 

firm is close to steady state. Nor is it easy to judge whether depreciation is close to IRR-

depreciation. The objective of this paper is to provide estimates of internal rates of return for 

firms without invoking steady-state assumptions. Instead restrictions will be put on cash flow 

profiles. First of all it will be assumed that flow profiles are linear (in time):   

 

(6) ct = c0 + b t,  t = 1, 2, …… , T.  

 

It will also be assumed that cash flows are decreasing (weakly), but not decreasing too fast. 

Keeping r constant, c0 and b must satisfy the following conditions: 

 

(6i) (c 0 + bt)
1

(1+ r)t =1
t=1

T

∑  

and 

(6ii) –(1/T) r ≤ b ≤ 0 

 

This set of cash flow profiles will be denotes L(r). Letting r vary over the set of r’s that have 

positive probability (the support of r), generates the complete set of possible cash flow 

vectors. 

 

For cash flow profiles in the set L, IRR-depreciation is more conservative than ANN(r) and 

less conservative than LIN. ANN(r) equals IRR-depreciation if b = 0. LIN equals IRR-

depreciation if b = -r/T. It follows immediately from steady state theory that expected return 

would be bounded by ρL and ρA regardless of the growth rate and the cash flow vector in L. 

Calculating both ρL and ρA first of all makes it unnecessary to know the sign of (g – r) since it 

equals the sign of (ρL - ρA). More significantly the bounds will provide information about the 

size of the potential bias in steady-state not only its sign. The idea of calculating two 

                                                 
3 This paper will follow the  traditions of this literature and assume that realized firm cash flows are 
only observable in the aggregate. 
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accounting rates of return to produce an interval estimate on the IRR is the main focus of this 

paper. Steady state being a serious limitation, the next section is devoted to relaxing this 

assumption. 

 

3.  More about the expected rate of return 

 

Throughout this section expected cash flow profiles are assumed to belong to the set L.  

The first theorem characterizes ρL and ρA for a single project and states that r is bounded by ρL 

and ρA at any time t. The theorem thus extends the idea of an interval estimate from steady 

state to a single project. 

 

Theorem 1 
  

Assume that c ∈ L. 

 

Then there exists a real number t0, such that: 

 

 For t < t0; ρL ≤ r ≤ ρA, and  

 

 For t > t0; ρL ≥ r ≥ ρA, 

 

Moreover ρL(t) is increasing, and ρA(t) is decreasing in t. ρL(t) - ρA(t) is strictly increasing in 

t. 

 

The proof of theorem 1 is in the appendix. 

 

Theorem 1 may be illustrated numerically. Assume investment (K) equals 1, that the life of 

the project (T) is 25, and that the internal rate of return (r) is .12. Then constant cash flows 

(b=0) implies an annual cash flow of .1275. Maximally decreasing cash flows (b = .0048) will 

start at .16 in period 1 and decline to .0448 in the last period. Figure 1 shows the ARR as a 

function of age using different accrual vectors. ARR identically equal to .12 obtains when 

constant cash flow is combined with annuity depreciation or maximally decreasing cash flows 

is paired with the linear method. The increasing line shows how the ARR develops over time 

with linear depreciation and constants cash flows. Finally, the decreasing line exhibits the 

accounting return when annuity depreciation is used even though cash flows are decreasing at 

the maximum rate within the set L (the dotted line may be ignored for the time being). 
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(Figure 1 here) 

 

Figure 1 shows that the effect of the accrual vector is quite strong when investments get old. 

This is particularly true for long-lived investments as in this example. The lines in the figure 

shows the maximal ‘measurement errors’ that may be made when the cash flow vector is 

constrained to be in the set L. However, for any particular cash flow vector in L, the interval 

estimate for the IRR obtained when using both depreciation plans will be much narrower – 

approximately half the distance between the two lines. The reason is of course that ρL and ρA 

cannot both miss by the maximum amount simultaneously. 

 

As noted above, a firm is a collection of investment projects of different vintages. The 

accounting rate of return for a firm is a weighted average of the returns on the different 

projects using the relative book values as weights (see (4)). As the accounting rate of return is 

a nonlinear function of time, and the book value depends on the depreciation plan, it is by no 

means obvious that theorem 1 extends to a firm. However in section 2 it was shown to hold 

for a firm in steady state. Theorem 2 demonstrates that it ρt
A and ρt

L provides bound on the 

IRR for any collection of investment projects i. e. for any firm (provided the cash flow vector 

belongs to L). 

 

 

Theorem 2 

 

Assume that c ∈ L. 

 

Then, 

 

 (ρL – r) (ρA – r) • 0, for all investment profiles (K-T, K-(T-1), … , K-1). 

 

The proof of theorem 2 is in the appendix. 

 

The boundedness result of course implies that one ARR overestimates and the other 

underestimates the true IRR. It is of interest to know under what conditions ρt
A overestimates 

and ρt
L underestimates the IRR and vice versa. Roughly speaking this follows immediately 

from the one-project analysis of theorem 1. LIN leads to underestimation of IRR when the 

firm is young i. e. when new projects predominate, and to overestimation for older firms. For 

ANN the opposite result holds.  
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More precise statements are possible. Using LIN and assuming as before a linear cash flow 

profile, the accounting return is a function of the weighted average age of investment projects. 

To put it a little differently, the average age is sufficient for the investment profile vector. 

When the average age is below t0 (defined in theorem 1), the ARR underestimates the IRR. 

When the average age is above t0, overestimation occurs.  

 

With ANN the relationship between measurement error and age is more complicated. It is still 

true that the sign of the measurement error is a function of average age only. Again t0 is the 

pivotal age. However, ceteris paribus the size of the measurement error is (weakly) increasing 

in the age spread when the annuity method is used4. These results are collected in the 

following theorem. 

 

Theorem 3 

 

Assume that c ∈ L. 

The firm is described by an investment profile K = (K-T, K-(T-1), … , K-1). Let t0 be defined as in 

theorem 1, and let t  be the weighted average age of the firm: 
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Then: 

 

 For t  < t0; ρ
L • r • ρA, and ρL < ρA 

 For t  = t0; ρ
L = r = ρA, and 

 For t  > t0; ρ
L • r • ρA, and ρL > ρA 

 

Moreover, with respect to ρL t  is sufficient for the investment profile K. On the other hand 

ρA − r  is increasing in the spread of K. 

 

The proof of theorem 3 is in the appendix. 

 

Theorem 3 is clearly related to steady-state theory discussed above. Steady-state with growth 

rate equal to r, implies an average asset age of t0. A high growth firm is a young firm whereas 

                                                 
4 By spread is meant the usual second order dominance ranking of distributions – here age distributions. 
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an old firm has experienced low growth. However, steady-state is a very strong condition to 

impose on an investment profile. Theorem 3 requires no assumptions on investment profile, 

and is therefore a much more useful result. On the other hand theorem 3 requires a linear cash 

flow profile, which may not obtain even as an approximation in many cases. 

 

Figure 1 can also be used to illustrate theorems 2 and 3. Theorem 3 says that the increasing 

line also depict ARR for firms. It is sufficient to interpret age as average age. For the annuity 

method matters are more complicated; age spread matters as well. The dotted line in figure 1 

represents ARR as a function of average age for a two-investment firm when annuity 

depreciation is used (along with maximally decreasing cash flows). The firm has been 

constructed to maximize age spread; a firm of age 5 has 1 and 9 year old investments whereas 

average age of 16 means ages 25 and 7. Clearly the effect of the age spread is larger for older 

firms. The reason is that non-linearities are stronger here. Note in particular the change 

between ages 12 and 13 in figure 1. All firms of age 13 and older include a 25 year old 

investment. 

 

This section concludes by a discussion of some of the assumptions made. The cash flow 

vector c, which is assumed to be linear and decreasing, represents nominal cash flows. 

Inflation may present a potential problem by introducing non-linearities in the cash profile 

and by making the case for also allowing cash flows which increase over time. If, for 

example, real cash flows are constant and inflation is positive and constant, nominal cash 

flows will be increasing and convex. However, the theory may be adapted to handle inflation. 

If it is assumed that real (rather than nominal) cash flow vectors belong to the set L, theorems 

1 through 3 will still be valid if inflation adjustments are introduced to either cash flows or 

accruals. 

 

The particular annuity method considered in theorems 1 through 3 is ANN(r). This method 

requires knowledge of r. The assumption may be justified if management chooses the accrual 

vector. Management may know r even if they do not know the slope of the cash flow vector. 

On the other hand, if an external analyst picks the depreciation plan, knowledge of r cannot 

very well be assumed.  

 

In case r is not known, the analyst must start the estimation process by making an informed 

guess of r to be used in calculating the accrual vector. If there is little variation in the annual 

cash flows (in particular if cash flows are non-random) the assumed value of the IRR may be 

tested against the calculated values of the ARR. Recalling the numerical example, assume that 

cash flow is constant, and that the analyst guesses that the internal rate of return is .16 rather 

than .12. In that case ρ1
16 is .1235 whereas is ρ1

L is .0875. The analyst may then conclude that 
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r is between .1235 and .0875, which should lead her to start over with a downwardly revised 

estimate of r.  

 

If cash flows are random, which is the more realistic case, it is more difficult to evaluate 

initial assumptions. A low ARR may be due to negative deviations from the mean rather than 

overestimation of the mean. In that case the analyst might try a different approach. If the 

objective of the analysis is to construct a band, which covers the true expected IRR, i should 

be chosen such as to broaden the band rather than shrink it. In that case the analyst should 

choose a high rather than a low value of i. Figure 2 illustrates the consequences of using 

ANN(16) rather than ANN(12) in the numerical example with b = -.0048 (the lower bound). 

 

(Figure 2 here) 

 

Figure 2 illustrates the following general facts: ρ16 - ρ12 is fairly small in absolute value. 

Except for the last four periods, the difference is smaller than one percentage point, and for 

the most part considerably smaller (it is less than .4 percentage points until period 20). Thus ρi 

is not very sensitive with respect to overestimation of i.  ρ16 - ρ12   is positive for low values of 

t, and negative for high values of t. However, the three lines in figure 2 do not cross in the 

same point.5 Although this may be hard to see from figure 2, ρ16 and ρ12 cross between periods 

13 and 14 whereas ρL and ρ12 cross at t0 (which lies between periods 7 and 8). Thus using ρ16 

rather than ρ12 widens the band in periods 1 – 7 and periods 14 – 25, but makes the band 

narrower in periods 8 through 13. Fortunately, the band is reduced by very little (less than .2 

percentage points) in this interval. 

 

 

4.   Actual rates of return 

 

Thus far the theory has only dealt with expected values. The main results specify conditions 

under which expected accounting returns brackets the expected internal rate of return. Actual, 

observed rates may of course differ from their expected values. Introducing uncertainty 

explicitly raises a host of new issues, which are outside the scope of this work. The most 

fundamental question is perhaps which internal rate of return one would like to measure.6 

 

                                                 
5 I have not been able to show that ρi and ρj only cross once in general. 
6 Alternatives are: The ex ante expected rate of return, the revised expected rate of return of the project 
taking realized cash flows into account and the expected return on the remainder of the project. 
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Here uncertainty is introduced in the simplest manner. Actual cash flow is assumed to be 

equal to expected cash flow plus random error terms are identically distributed and 

independent of everything else7: 

 

(8) ˜ c t = c t +ε  

 

It follows that the actual accounting rate of return may be expressed as follows (k = ANN, 

LIN and γ denote the accrual bias): 
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The accounting rate of return for a firm be may derived by aggregation. Since the analysis is 

not going to probe very deeply, a looser approach will be adopted. The time subscript in the 

two expressions will be dropped, and ρ and ε may refer to firm as well as project returns.  

 

The accounting rate of return has two different interpretations.  First of all it is a measure of 

the (expected) internal rate of return. Secondly, it is a measure of the return on capital in 

period t (including windfalls). It is not at all clear that the second interpretation is meaningful, 

and it will not be pursued further here.8 As a measure of the internal rate of return, the 

accounting rate has two sources of error. The first one - γ - has been studied above. It is 

created by the accrual vector, and for a given t  its sign is known. However, from a Bayesian 

perspective it may be considered a random error as long as b is an unknown parameter. The 

second source of error is the cash windfalls ε.  

 

It is obvious that the effect of the cash flow error depends on accruals. For a given ε the last 

term in (9) will decrease in book value (in absolute terms). Since book value is negatively 

related to age and conservatism, the first part of the next theorem follows immediately. Thus 

the effects of random windfalls on the ARR depend on the depreciation plan. The second part 

of the theorem states the relationship between actual accounting returns when ε varies. The 

final result provides a way to estimate r on the basis of the accounting rates of return; the 

estimator will be discussed below:  

 

                                                 
7 Hence observed cash flows have no relvance for future cash flows; e is a pure windfall in the parlance 
of income measurement. 
8 It may be argued that the effect of windfalls on profitability cannot be expressed by their relationship 
to current book value. Such effects must be seen in the context of the project as a whole. 
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Theorem 4 

 

(i) sm.conservati and agein  increasing is ~ ρρ −  

(ii) ˜ ρ L = aA − aL
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BL
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(iii) Assume that c ∈ L, Γ+= LA γγ , and 2/Γ=−= LA EE γγ , then the following 

estimate of r is unbiased and independent of ε: 
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Proof: 

Using (9) for i = A and solving for ε, yields ε = BA( ˜ ρ A  - ρA). Inserting this expression into (9) 

for i = L and collecting terms yields (ii).  

 

To prove (iii) first note that α1 has been chosen to make the error term vanish. Taking 

expectation, again using (9) as well as the assumptions in the theorem, shows that the 

estimator is unbiased. 

 

The accounting rate of return will reflect periodic windfalls (positive or negative). Because 

conservatism implies lower book values, the variance in the accounting rate of return will 

increase. Conservative accounting will imply more extreme measures, reporting higher 

returns in good times and lower in bad times. This insight may be of some interest for 

financial analysis. Similarly book value is decreasing over time, and the impact of windfalls 

increases.9 

 

The accounting rate of return may also be interpreted as a measure of the (ex ante) expected 

internal rate of return. From this perspective ε is a source of measurement error. This error is 

amplified by conservatism, and will be superimposed on the error caused by the choice of 

                                                 
9 It may be argued that the variance of ε should also decrease over time - in particular if expected cash 
flow declines. However, the varance of returns would still be decreasing with age even if it were 
assumed that the error variance were proportional to expected cash flow. 
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accrual vector. Sometimes these sources of error work in the same direction. In other cases 

they may cancel out. 

 

Figure 1 illustrates the relationship between ˜ ρ A and ˜ ρ L  for three different firms (or projects). 

When ε = 0, ρA and ρL over- and underestimates expected return respectively for a young 

firm. See point a in figure 1. In bad times (ε < 0)  ~L
tρ  will underestimate r a fortiori and  ~ Aρ  

may underestimate r as well. In good times on the other hand (ε > 0)  ˜ ρ A and ˜ ρ L   may both 

overestimate r, and linear depreciation may very well produce the higher accounting rates of 

return. LA ρρ ~ - ~  (measured as the vertical difference between the 45° line and the young 

firm line) decreases in ε. 

 

For an old firm (or project) the effects go in opposite directions. The difference between 

accounting rates of returns increases in ε. For firms whose average age is close to t0, the 

accrual errors vanish, and the ε-error determines the difference between accounting rates of 

return and between the expected internal rate of return and the former.  

 

Under certainty r may be measured perfectly if t  = t0 regardless of the accrual vector. When 

cash flows are random, this does not work since ε is unobservable. With two ARRs, however, 

it is possible to identify ε by triangulation, and measure r without error. Theorem 4(iii) 

generalizes this insight. The restriction on the cash flow vector implies that the accrual errors 

γ has opposite signs. The assumptions of the theorem impose a certain symmetry on their 

subjective probability distributions; the sum of their absolute values are equal to a known 

constant Γ, and their means are equal. Under these assumptions it is possible to derive an 

unbiased estimate of r that is independent of ε.  

 

There are of course many unbiased estimators of r, but r̂  may be attractive if ε is the major 

concern; for example if the variance of ε is large, or there are few available observations. The 

distribution of γ depends primarily on the distribution of (beliefs about) the cash flow 

parameter b. The theory implies that the symmetry assumptions may represent a reasonable 

approximation if the distribution of b is symmetrical. It should be noted that the variance of 

r̂ might be considerable if BL and BA are close. 

 

It follows from theorem 4 that the slopes of the lines in figure 3 are always greater than 1. It is 

also interesting and perhaps unintuitive that slopes as well as constant terms are independent 

of the expected cash flow profile c. However, it is important to note that ρA and ρL (the 
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expected accounting rates of return) will depend on c as well as on asset age. ρA and ρL in 

figure 3 corresponds to a young firm and a particular (downward sloping) expected cash flow 

profile. 

 

(Figure 3 here) 

 

5.  Implementation 

 

This section reports the results of an implementation of the ideas outlined in sections 3 and 4. 

As the calculations involved in remeasuring accounting rates of return are quite extensive, a 

large sample study is beyond the scope of this work. Instead a longitudinal case study has 

been chosen. The case study will also serve as an illustration.  

 

The accounting rates of return for the Norwegian shipping company Odfjell have been 

calculated for the period 1986-99, using linear as well as annuity depreciation. Odfjell operate 

50 tankers for the transportation of chemicals. A shipping company has been chosen because 

the theoretical model seems to fit its investment activities reasonably well. Odfjell acquires 

similar ships on a regular basis. The ships are operated for period of 25-30 years until they are 

scrapped. Real (and perhaps even nominal) cash flows may be expected to decrease over time 

due to falling freight rates (caused by technical progress) and increasing maintenance costs. 

 

However, a moment’s reflection makes clear that there are many features of an actual 

shipping company that are not captured by the theoretical construct. Odfjell invests in 

financial assets and real estate (terminals) as well as ships. Of the 50 tankers, about 20 are 

leased on various types of contracts rather than owned. Moreover, used vessels are bought 

and sold, and transactions may take place any time during the year (not only at the end of the 

year). Hence the methods are implemented at less than perfect conditions (and the results are 

not tautological). 

 

Odfjell currently depreciates its ships linearly over a period of 25 years. However, the 

assumed life of the vessels has been increased twice during the period (in 1987 and 1995). For 

that reason linear depreciation has been recalculated using T=25 uniformly. Returns have then 

been derived using the annuity method with an interest rate of 12%. The rate was chosen after 

looking at the “linear” returns and deciding that 12% was in the ballpark (and probably on the 

high side). The rate of return reported here is the rate on operational capital. Financial assets, 
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financial income and “interest free” debt have been deducted where appropriate. These 

adjustments are potentially subject to considerable measurement error.10 

 

Table 1 Accounting rates of return, average age and book values, Odfjell 1985 - 1999 

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Mean
ρ 8.5 6.1 26.2 18.3 18.4 11.5 3.7 3.1 8.1 14.4 13.6 22.0 9.0 6.4 12.09
ρL 10.4 4.9 19.7 15.2 18.8 12.7 5.5 4.8 9.0 11.3 10.9 18.0 7.4 5.2 10.98
ρA 11.4 5.7 17.6 14.8 19.8 14.6 7.6 6.5 9.7 11.5 11.3 16.1 8.0 6.6 11.51
ρA-ρL 1.0 0.8 -2.2 -0.4 1.0 1.9 2.1 1.7 0.7 0.3 0.4 -1.8 0.6 1.3 0.53

r(est) 12.65 8.79 3.49 -3.46 12.07 16.58 15.11 16.34 14.74 13.83 16.21 6.24 10.36 11.44 11.03
AGE 6.6 7.5 6.0 4.1 4.6 5.2 6.2 7.6 8.0 7.8 8.4 7.6 7.6 7.2
BL 959 903 828 1507 1975 2913 3109 3298 3396 3678 3913 4181 5340 6344
BA 1113 1084 1026 1723 2217 3222 3517 3804 3991 4355 4676 5047 6268 7379
BA/BL 1.16 1.20 1.24 1.14 1.12 1.11 1.13 1.15 1.17 1.18 1.20 1.21 1.17 1.16 1.17
ρ - Accounting rate of return as reported 
ρL - Accounting rate of return with uniform linear depreciation (25 years), beginning book value is BL. 
ρA - Accounting rate of return with annuity depreciation (25 years, interest rate 12%), beginning book value is BA.  
AGE - average (relative) age of fleet.  
r(est) - estimate of internal rate of return using theorem 4(iii). 
 

 

Table 1 reports three return series based on actual, 25-year linear depreciation, and 25 

year/12% annuity depreciation respectively. They are highly correlated, although changing 

depreciation plan twice has clearly affected the reported returns. The absolute difference 

between ρA and ρL exceeds 2 percentage points only twice. Not surprisingly, in view of 

theorem 4, larger differences tend to occur when times are particularly good or bad. The mean 

difference is just .53%.11 The modest differences should be interpreted in light of the average 

age of the tanker fleet. The age does not differ very much from t0, which is 7.8 in this 

particular case.12 

 

To describe the relationship between ρA, ρL and AGE, the following regression has been 

estimated: 

 ρA - ρL = .1527 - .243(ρA -11.5) - .497(AGE – 7.5) 

 

                                                 
10 The case study is reported in more detail in Gjesdal (2001). Only public information has been used. 
Book values and depreciation has been recalculated using a spreadsheet. The main problems involve 
calulating beginning values for the fleet in 1986, and calculating annual depreciation when vessels have 
been bought and sold during the year. For the accounting returns beginning values of capital have been 
used throughout. 
11 This is the arihmetic mean which is more meaningful than the geometric mean in this context. 
12 Average age is here measured as relative age. Relative age means that a used ship will have age 0 
when acquired and depreciation starts. Odfjell acquired a number of older ships in the late eighties 
which implied that the absolute age increased and the relative age decreased. 
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The negative coefficient on ρA confirms theorem 4(ii). (Using the mean of BA/BL, the 

“theoretical” value is -.17). The negative coefficient on AGE confirms theorems 2 and 3.13 

The relationship between (ρA - ρL) and AGE (assuming ρA is 11.5) is shown in figure 4 along 

with the actual values. Note that the estimated line crosses the AGE axis at 7.8, which equals 

t0. 

 

(Figure 4 here) 

 

Finally using theorem 4(iii) to estimate r does not work very well. Assuming the true value of 

r equals 11, r(est) beats the average of ρA and ρL in only 8 of 14 cases. 

 

 

6.  Summary and concluding remarks 

 

In this paper return measurement has been addressed in a model reflecting explicit 

uncertainty. The expected return on long-term investment has been assumed constant, but 

subject to random cash flow shocks that are independent over time. This is obviously a first 

pass at introducing uncertainty. A natural second step would be to formulate a stochastic 

process that better reflects the empirical evidence of mean reversion in returns (Penman 

(1992)).  

 

Rather than assuming steady state, which is common in the literature, the cash flow profiles 

generated by investments (nominal or real) are restricted to be linear and decreasing. If cash 

flows are not declining too sharply, it can be shown that the expected accounting rates of 

return, calculated using linear and annuity depreciation respectively, effectively bounds the 

expected internal rate of return in every period of the life of an investment project.  

 

Considerable deeper is the conclusion that this result also holds for an arbitrary collection of 

investment projects (firms). Furthermore it is shown that with linear depreciation the expected 

accounting rate of return is only a function of the average age of projects (holding cash flow 

profile constant). Using the annuity method of depreciation, the accounting rate of return is 

also a function or the age spread of the portfolio.  

 

The assumption of linear cash flow profiles is at best a useful approximation. The robustness 

of this approximation should be investigated further. It seems likely that the bounds 

                                                 
13 The relationship is not predicted to be linear. 
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constructed by using different depreciation plans should hold for more general cash flow 

profiles – at least at the project level.  

 

In the illustrative case study it is demonstrated that the bounds provided by the two different 

measures of return are quite sharp. The maximum absolute difference is 2.2 percentage points 

over the 14-year period, and the average difference is .53. The average age of the firm’s fleet 

of ships varies between 4.1 and 8.4 (The expected accounting rates of return equal the return 

on investment when the average age is 7.8). 

 

Modeling cash flow uncertainty explicitly, it immediately becomes evident that the sensitivity 

of the accounting rates of returns with respect to variations in cash flows depends on book 

values. Book value depends on age as well as accrual policy. It is also agued that using 

several measures of return may reveal the effect of windfalls via triangulation. However, the 

power of this method depends on the variance of the slope of the cash flow profile (and other 

possible measurement errors), and it does not work very well in the case study. 
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APPENDIX 

(Proof of theorems) 

 

Proof of theorem 1 

 

First it will be shown that a linear cash flow profile will satisfy (6i) if and only if there exists a 

pair of constants t0 and d (which depend on r) such that the parameters c0
 and b satisfy  

 

(A1) c0
 + b t0 = d 

 

Solving for c0
 and inserting into (6i) yields: 

 

 

1 = (−bt0 + d + bt)
1

(1+ r)t
=

t =1

T

∑ (−bt0 + d)
1

(1+ r)t
+

t=1

T

∑ (bt)
1

(1+ r)t
t =1

T

∑

= (−bt0 + d)
1

(1+ r) t
+

t =1

T

∑ b
t =1

T

∑ t
(1+ r)t

= b(−t0 A(r,T ) + ˆ A (r,T )) + dA(r,T )

 

 

Where A(r,T) and ),(ˆ TrA  are defined by the respective sums. 

 

This equation will hold for all b if At0 - ˆ A = 0, and d A = 1. These two equations may be used 

to solve for the parameters t0 and d. It follows that pairs (c0, b) satisfying (A1) for these values 

of the parameters, will also satisfy (6i). These pairs characterize all linear cash flow profiles 

going through the point (t0, d).  

 

There cannot be any other linear cash flow profiles satisfying (6i). (If there were, the profile 

would be parallel to one profile satisfying (A1)). Two parallel profiles cannot both satisfy 

(6i)). Hence (A1) characterizes all linear cash profiles with a given internal rate of return. 

 

To prove the first part of the theorem, keep b within the bounds specified by (6ii). Then ct is a 

function of b: ct = c0(b) + bt. For t < t0, ct is decreasing in b. Hence for a given depreciation 

plan, ρ(t, b) is decreasing in b. It is well known that ρA(t, 0) = r = ρL(t, -(1/T)). Thus it follows 

directly that ρL(t, b) ≤ r ≤ ρA(t, b) for t < t0, and b satisfying (6ii). Similar arguments prove 

that ρL ≥ r ≥ ρA when t > t0. This concludes the proof of part 1. 

 

To prove the second part of the proposition for linear depreciation, assume that 



 ii 

 

 ρL(2) =
ρ L(1)B0 + b

B0 − a
< ρ L(1)  

 

(where a is annual depreciation). This is equivalent to  

 

 )1(L

a

b ρ>−  

 

Since a and b are constants, it follows by iteration that ρL(t+1) < ρL (t) for all t, and hence ρL 

(t) is strictly decreasing. This violates part one of the theorem. Hence –b/a ≤ ρL(1), and 

iteration again shows that ρL is weakly increasing. 

 

To prove the second part for the annuity method, first note that under this depreciation plan 

annual depreciation grows at a constant rate: at+1 = at (1+r). The accounting rate of return 

decreases if, 

 

 ρA
(t +1) =

ρA
(t)Bt−1 + b − rat

Bt−1 − at

≤ ρ A
(t) , 

 

or equivalently, 

 

(A2) b ≤ (r − ρA ( t))a t  

 

Assume that this condition is violated at time ˆ t , then ρΑ( ˆ t ) ≥ r (since b < 0). It follows that 

(A2) is also violated at ˆ t +1 since both factors on the RHS increase in absolute value. Hence 

ρΑ(t) ≥ r for all t ≥ ˆ t . This violates part one of the proposition, Hence ρΑ(t) is weakly 

decreasing.  

 

The above arguments imply that ρΑ(t) is constant if and only if b = 0. Similarly ρL(t) is 

constant if and only if b = r/T. Both cannot be constant at same time. This concludes the 

proof. 
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Proof of theorem 2 

 

If ρA
t is equal to r for all t, the theorem is obviously true. Otherwise the theorem is an 

implication of the following fact 

 

(A3) ∀t; 
(ρt

L − r)Bt
L

(ρt
A − r)Bt

A = k ≤ 0 

 

Assuming (A3) holds it easy to show that (ρL – r) and (ρA – r) have opposite signs. Assume 

(ρL – r) ≥ 0, then 

 

(A4) 
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If k = 0, the theorem is clearly true. If k < 0, it follows that (ρA – r) ≤ 0.  

 

The case in which (ρL – r) is negative, is handled in the same way. 

 

It remains to prove (A3). Interpreting r as the cost of capital (A3) is a ratio of residual 

incomes. Using R to denote residual income, it is sufficient to show that RL
t/R

A
t = RL

t+1/R
A

t+1 

for arbitrary t. Annuity depreciation implies that residual income decreases with time as cash 

flow is decreasing by b every period, and the capital charge (depreciation + interest) is equal 

to the constant d defined in (A1). With linear depreciation the capital charge decreases by a 

fixed amount r(1/T) per period. Hence the following equality must be proved: 
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The right and left hand sides will be evaluated separately. The right hand side is fairly simple 

to calculate since the difference in residual incomes equals the difference in capital charges: 
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bRR A
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L
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The left hand side is more complex. Using notation defined in (A1) and the proof of theorem 

1 above, the following equalities may be derived (the calculations involve evaluating ˆ A  and d 

which is non-trivial): 
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This concludes the proof. 

 

 

Proof of theorem 3 

 

The firm’s aggregate cash flow – C – may be expressed as follows: 
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Similarly, total book value – B – and depreciation – D - may be expressed as follows using 

(2): 
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It follows that ρL is a function of t  (as well as the parameters of the cash flow profile: c0, b 

and T). In other words t  is sufficient for the investment profile K = (K-T, K-(T-1), … , K-1). 

 

Since this relationship must hold for a single project as well as for a firm, it follows from 

theorem 1 that ( t - t0)(ρL - r) ≥ 0, and theorem 2 then implies that ( t - t0)(ρA - r) ≤ 0. 

 

Next define f as follows: 
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Using (A4) the ARR may then be expressed in the following way: 
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Varying the investment profile K, keeping the weighted average age constant, ρL, r and 

average book value is constant. It follows that f must be constant as well.  

 

Using the same logic and (A3), ρA may be expressed as follows: 
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Using annuity depreciation book value is a concave function of age. It follows that the term in 

the denominator on the RHS of the expression will decrease in the age spread of the 

investment profile K. Hence keeping the average age (and hence f) constant the absolute 

value of ρA – r will increase in the age spread (defined in the usual way as second order 

dominance). This concludes the proof of theorem 3. 
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The figure displays the actual accounting rate of return using linear depreciation – Lρ~  

– as a function of the actual accounting rate of return using annuity depreciation – Aρ~  
– for a “young firm”, an “old firm” and an “average firm”. For a young (fast growing) 

firm Aρ~  has a positive bias γA whereas Lρ~  has a negative bias γL. For an old (mature) 
firm the biases are reversed (not shown in the figure). 
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