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Abstract: A new approach of model parameter estimation is used with simulated measurements to 

recover both biological and economic input parameters of a natural resource model. The data 

assimilation technique is the variational adjoint method (VAM) for parameter estimation. It 

efficiently combines time series of artificial data with a simple bioeconomic fisheries model to 

optimally estimate the model parameters. Using identical twin experiments, it is shown that the 

parameters of the model can be retrieved. The procedure provides an efficient way of calculating 

poorly known model parameters by fitting model results to simulated data. In separate experiments 

with exact and noisy data, we have demonstrated that the VAM can be an efficient method of 

analyzing bioeconomic data.  
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Introduction   

 

In this paper we use a simple bioeconomic fisheries model to introduce and demonstrate the 

potential usefulness of a new technique of optimally estimating the parameters of a dynamic 

fisheries model. The approach is known as data assimilation. In data assimilation mathematical or 

numerical models are combined with available measurements in order to improve the model itself 

or to improve the model forecasts. The former application is known as model fitting (Smedstad & 

O'Brien 1991). A variety of these techniques such as the Kalman filter (Kalman 1960), Optimal 

Interpolation and the Variational Data Assimilation (Smedstad & O'Brien 1991) are already in 

common use. These techniques have extensively been used in areas such as groundwater hydrology 

and petroleum reservoirs (see Carrera & Neuman 1986) and more recently in ecosystem models 

(Matear 1995). The assimilation technique in this paper is the so-called variational adjoint method 

(VAM). This method minimizes a preconstructed loss function which is defined by the differences 

between the data and the model forecasts. The optimal or best fit parameters are obtained by 

minimizing the cost or loss function subject to the dynamical constraints via the so called adjoint 

equations which map the predefined loss function into the gradient with respect to the control 

parameters (Lawson et al. 1995). The gradients are then used iteratively in a descent or Newton 

type of algorithm in order to search for the minimum of the loss function.     

 

Application of these techniques is spreading very rapidly to many areas such as physical and 

biological systems (Spitz et al. 1997). Lawson et al. (1995) applied the technique of data 

assimilation to the well-known and extensively studied predator-prey model in biology. Other 

techniques of data assimilation are the simulated annealing (Kirkpatrick et al. 1983) and the hybrid 

Monte Carlo (Harmon & Challenor 1996). These are stochastic in nature and may be very costly to 

implement. 
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Much research in bioeconomics of fish stocks has been based on simple aggregated biological 

models (Clark 1990). Classical growth models such as the logistic and the exponential functions are 

the commonly employed models in the qualitative analysis of fish stocks. The reality of these 

models has not yet been rigorously tested against measurements. Data assimilation provides the 

opportunity to test these models using the available data which are assumed to be more realistic 

than the models themselves. More realistic bioeconomic models e.g. models of interspecific 

competition may be multidimensional and complex. They may contain many parameters such as 

the intrinsic growth rate, the environmental carrying capacity, etc, whose values are extremely 

difficult to measure. Parameterization of the models becomes mathematically untractable and 

impractical. As a consequence, biologists and bioeconomists have found it necessary to introduce 

simpler models. The issue of identification, i.e., the problem of estimating parameters so that the 

model predictions are more realistic and useful, has been raised by many natural resource 

economists (Clark 1990). However, adequate attention has not been paid to the problem. Instead, 

economists have focused on the analytical considerations leading to a neglect of most of the vital 

questions resource managers/fishers are mostly concerned about, e.g., what is the safe biomass 

level (Deacon et al. 1998), etc. In this paper, we will use the VAM in an attempt to show how some 

of these empirical questions may be addressed.   

 

Due to the progress in data collection and processing in recent times from both fisheries biologists 

and economists and the advances in computer technology, techniques of data assimilation which 

are both data and computer intensive have good future prospects. The assimilation technique 

(VAM) introduced in this paper has some advantages compared to the conventional regression 

analysis. First it provides a more accurate and efficient way of calculating the gradients of the loss 

function compared to the finite difference approach. Second, it can be used for more realistic and 
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complex dynamical models of bioeconomic systems. Third, it can be used to adjust both the initial 

conditions and the parameters of the model. Conventional regression methods do not provide the 

opportunity for estimating initial and boundary conditions. Notice that the VAM is a more general 

formulation than the traditional regression. It can be used for both linear and nonlinear models and 

is highly suitable for more realistic models where closed form solutions are unattainable. The 

method can be used to simultaneously estimate a large number of parameters.   

 

Primarily, the focus of the paper is to demonstrate the applicability of the method in natural 

resource economics. Hence the use of the simulated data to show the basic steps required to 

implement the VAM. The model used is also relatively simple but sufficient for this application.  

 

The plan of this paper is as follows. First, the VAM will be presented and the solution algorithm 

outlined. Second, the bioeconomic fisheries model will also be presented. Third, identical twin 

experiments will be performed and the results discussed. Finally, we discuss and summarize the 

work. The mathematical details are relegated to the Appendix. 
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The loss function 

 

In adjoint parameter estimation a loss function which measures the difference between the data and 

the model equivalent of the data is minimized by tuning the control variables (parameters) of the 

dynamical system. The goal is to find the parameters of the model that lead to model predictions 

that are as close as possible to the data. A typical loss function takes the form 
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where X
�

 is the observation vector, X  is the model equivalent of the data. The period of 

assimilation is denoted by Tf  and T is the transpose operator. The criterion function is a continuous 

form of the familiar least squares. This formulation is consistent with the continuous model 

dynamics. However, in practice, data are often discrete and finite in time thus, the discrete 

equivalent of the loss function is usually used.   

 

The adjoint method 

 

Consider the forward model equation 
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where X is a scalar or vector of model variables, F is a linear or nonlinear operator, and X0 is the 

vector of initial conditions. Minimization of (1) subject to (2) is a constraint optimization. 
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Formulating the Lagrange function by appending the model dynamics as a strong constraint 
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where M is a vector of Lagrange multipliers which are computed in determining the best fit. The 

original constrained problem is thus reformulated as an unconstrained problem. At the 

unconstrained minimum the first order conditions are 
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It is observed that equation (4) results in the adjoint or backward model, equation (5) recovers the 

model equations while (6) gives the gradients with respect to the control variables. Using calculus 

of variations or optimal control theory the adjoint equation is 
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and the gradient relation is 
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The term on the RHS of the first equation in (7) is the misfit that acts as forcing term for the adjoint 

equations. It is worth noting here that we have implicitly assumed that data are continuously 

available throughout the integration interval. Equations (2) and (7) above constitute the Euler-

Lagrange (E-L) system and form a two-point boundary value problem.   

 

Implementation of the adjoint technique on a computer is straightforward. The algorithm is outlined 

below. 

 

• Choose the first guess for the control parameters. 

•  Integrate the forward model over the assimilation interval. 

•  Calculate the misfits and hence the loss function. 

•  Integrate the adjoint equation backward in time and calculate the gradients. 

•  Find the minimum of the loss function using an iterative procedure. 

 

The optimization step is performed using standard optimization procedures. In this paper, a limited 

memory quasi-Newton procedure (Gilbert & Lemarechal 1991) is used. The success of the 

optimization depends crucially on the accuracy of the computed gradients. Any errors introduced 

while calculating the gradients can be detrimental and the results misleading. To avoid this 

incidence from occurring, it is always advisable to verify the correctness of the gradients (see, 

Smedstad & O'Brien 1991). Verification of the adjoint code is performed by a simple Taylor series 
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expansion of the loss function about a certain vector of the control variables x , i.e.,  
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Where γ is a small scalar, u  is an arbitrary vector. Defining a function φ(γ) and rewriting (9) we 

have 
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Hence, in the limit as γ approaches zero, the value of φ(γ) approaches unity. If the scalar γ is small, 

the values of the function φ(γ) will be approximately equal to one.  

 

The bioeconomic model 

 

This section presents the bioeconomic fisheries model. It is an aggregated or lumped parameter 

model of a single stock i.e. the biomass model (Clark 1990). The population dynamics of the 

fishery will be modeled as 

 

hxf
dt

dx −= )(          (11) 

 

where h(t) is the harvest rate from the stock, x(t) is the stock biomass, f(x) is the growth function 

which for this analysis is the logistic model. That is f(x) = rx(1-x/K) where r  and K are positive 

constants called the intrinsic growth rate and the environmental carrying capacity respectively. The 
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biological model specified above depends on two parameters (r, K). These parameters are little 

known in the scientific community for most fish stocks around the world. Accurate measurements 

of their values are difficult if not impossible, thus statistical estimation methods were devised by 

Schaefer (1964) to find estimates of the parameters. This paper has similar goal of devising 

mathematical methods of estimating the parameters of the model dynamics (differential equations) 

using artificial data. 

 

The economics is also simple in this analysis. A hypothetical sole owner is envisaged. The goal of 

the management is to maximize a given discounted profit or utility 

 

∫ −fT t dthemax
0

)(πδ          (12) 

 

where h(t) is the control variable,  � �� ��� ����	
�� �
��� Tf is the time horizon which may be finite 

or infinite and ���� is a rescaled economic function given by 

 

2hah −=π           (13) 

 

where a is an economic parameter to be estimated. The objective function is assumed to depend 

explicitly only on the harvest rate from the stock. Note that, � can be the net revenue or utility of 

consumption and it is rescaled to reduce the number of parameters in the model. 

 

Maximizing the above problem (12) subject to the natural constraint is a nonlinear optimal control 

problem (Clark 1970).  
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Application of maximum principles to the above problem yields the following system of coupled 

nonlinear ordinary differential equations [ODEs] (see Clark 1990; Appendix). 
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Analytical solutions of the system of nonlinear ODEs are in general unobtainable. However, 

approximate numerical solutions of these equations are easy to obtain if the necessary initial and 

boundary conditions are specified. In reality however, the initial conditions that lead to the 

separatrix solution are not precisely known a priori. Clark (1990; p.98, 184) has offered a more 

detailed analysis of this model. Given a set of data, a solution could be found by either manually or 

automatically tuning the poorly known initial and/or boundary conditions as well as the free 

parameters of the model until a satisfactory solution is obtained. This could easily and efficiently be 

achieved by the use of the data assimilation technique introduced in this paper. 

 

Identical twin experiments will be used throughout the analysis. That is, data will be generated 

from the model itself using Monte Carlo simulations. This guarantees that the model and the data 

are consistent and serves as a good test of the adjoint algorithm. Note that real data are not used 

here because; the underlying assumption of optimality is inconsistent with most available data. A 

moderate objective of the paper is to demonstrate the usefulness of this approach in resource 

modeling, hence the use of this simple model which is fairly well known and much used in 

bioeconomic fisheries analysis. To carry out the experiments, reasonable parameter values will be 

chosen for the model and the VAM will be used to recover the parameters.  
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Equilibrium analysis 

 

The equilibrium behavior of the simple fishery model in this paper is studied. Note that in spite of 

the simplicity of the model it has many interesting real life implications. For an infinite horizon 

problem, the optimal path for the dynamics is the separatrix leading to the equilibrium point. At the 

optimal equilibrium, the following conditions hold: dx/dt = 0 and dh/dt = 0 which implies that 

rx*(1 – x*/K) - h* = 0 and -0.5(a - ������ - r(1 - 2x*/K)) =0. This gives rise to these equilibrium 

points: (h* = a/2, h* = rx*(1 - x*/K)) and �� � ��	 - 2x*/K), h* = rx*(1 - x*/K)). Notice that the 

first equilibrium is a bliss point (i.e., point at which the benefits are maximum) and most rewarding 

from the economic viewpoint if achievable. It is the theoretical optimum for the quadratic benefit 

function defined above i.e. �
��
� ���
   

 

• Case 1. For the case of the bliss point the optimal equilibrium harvest and stock are h* = 

a/2 and 
Kr

K

ar
rr

x
/2

22

*

−±
= , where the term under the square root sign is restricted to be 

nonnegative. Many interesting observations are made here. Notice here that when the term 

under the square root sign is zero, we recover the maximum sustainable yield (MSY) 

optimum x* = K/2. However, if the square root term is small compared to 2r two different 

values exist for the equilibrium stock and the larger may be preferred (Clark 1990 showed 

that this equilibrium is stable). A larger standing equilibrium stock leads to higher sustained 

yield for the capital asset.   

 

• Case 2. This case leads to the equilibrium biomass x* = K(1 - ������. The term ���, i.e., the 

ratio of the discount factor to the growth rate, is what is referred to as the bionomic growth 

����� ��	��
 ���
�� ������� � � � �����	 
�� �
� ������ as usual. The optimal equilibrium 
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harvest h* is obtained by simply substituting the x* into the equilibrium stock-harvest 

relation above. The second case seems to be embedded in case one if Karr /22 −=δ . It 

is important to notice the link between r ��� ��  

 

The reader would have noticed that in case 1, the equilibria arise because the marginal revenue or 

utility a - 2h = 0 is zero "economic optimality". This yields two equilibrium Biomass levels both of 

which are shown to be stable (Clark 1990, p184). In the second case, the equilibrium is because,  

r(1 - 2x/K) = 0. This can be seen as a biological equilibrium because that is where the growth is 

maximum.  

 

The twin experiments 

 

To test the performance of the data assimilation method, artificial data are generated from the 

model itself using known values of the parameters and initial conditions. This will avoid any 

inconsistencies between the data and the model. The data are generated by )1( nnn xx ε+=�  where 

nε  ~ U(b,c) and U denotes uniform. That is, the model is solved and a given percentage of random 

noise is added to the model predictions. Note that the noise is assumed to be measurement errors 

not process errors. The goal of the experiments is to show that for a reasonable amount of noise, the 

VAM is capable of retrieving independent model parameters well. To illustrate the technique we 

use the following hypothetical parameter values: r = 0.35 per unit time and K = 6000 tons. From 

which the value of a is deduced. This is done by using the example in case 1 with the term under 

the square root equal to zero. This yields: x* = K/2 = 3000 tons, h* = rK/4 = 525 tons and a = 2h*  

= 1050 tons. The initial conditions are x(0) = 1200 tons and h(0) = 120 tons.   
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Several experiments were performed using clean and noisy data. For the noisy data, 100 

simulations were conducted by resampling from the same distribution and the means of the 

recovered parameters are then calculated. The results are shown in Table 1 for different levels of 

noise. The noise level was increased in steps of 5 % to a maximum of 20 %. Estimates of the 

parameters and their bias are provided to help readers to easily judge the performance of the 

algorithm. The bias is defined as the difference between the true parameter value and the estimated 

value. The bias is quite insignificant compared to the noise in the data. It in general increases with 

increasing level of noise but the increase is less than proportionate. The parameters of the model 

dynamics are recovered reasonably well as shown in Table 1. The real test of any assimilation 

scheme is when it is applied to real data. We do not use real data because most real world fisheries 

have traditionally not been optimally managed and thus the available data may be inconsistent with 

the model developed in this paper. Note that different initial guesses for the parameters are used to 

check for convergence to absolute minimum. The results are not very sensitive to the initial guesses 

of the parameters. 

 

Summary and conclusion 

 

This work to our best knowledge represents the first attempt to explore the highly advanced and 

attractive method of parameter estimation in resource economics. The basic idea is to find 

parameters of a dynamic fisheries model which yield model results that are as close as possible to 

the observed quantities.  

In a few experiments we have demonstrated the utility of the adjoint technique in recovering model 

parameters such as the growth rate of a bioeconomic model. These parameters are vital in 

understanding the dynamics of the exploited species which can lead to a more accurate and realistic 

management policies. Estimates of the bias show that for a reasonable amount of noise, the 
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recovered values are not too far away from the true values. To conclude, the paper has 

accomplished the following. A novel approach to dynamic model parameter estimation has been 

introduced with reasonable degree of success using a simple bioeconomic model. Its potential in 

handling nonlinear models is also demonstrated and thus it is important to explore more of the 

capabilities of the method in future.  
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Appendix  

Derivation of the bioeconomic model 

 

Consider the problem 

 

∫ fT
dthmax

0
)(π          (A.1) 

 

subject to 
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Defining the current value Hamiltonian function H(x,h,m,t) 

 

 )()( hfmhH −+= π          (A.4) 

 

where m(t) is the current value multiplier. Assuming an inner solution, the first order conditions 

are: 
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From (A.5) we have 
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xh
dt

dm
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Equating (A6) and (A7), and rearranging yields 

 

hh

hxf
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dh

π
πδ )( −
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Equations (A.2) and (A.8) constitute a 2-dimensional dynamical system.  
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Table 1: Results of assimilation experiments for different level of noise. The true parameters are: r 

= 0.35 per unit time, K = 6000 tons and a = 1050 tons. The criterion for convergence is 

8
0 10/ −=JJ  where J  is the initial value of the cost function. 

 

                                                 Percent Noise (%) Parameters 

0 5 10 15 20 

r  0.3500 0.3505 0.3491 0.3545 0.3554 

K  6000 5998 6114 6142 6228 

a  1050 1053 1063 1077 1089 

rr −  0.0000 0.0005 0.0009 0.0013 0.0019 

KK −  0.0000 2.0000 114.00 142.00 228.00 

aa −  0.0000 3.0000 13.000 27.000 39.000 

 

 

 

Estimated model parameters and their bias.  .  is the absolute value of the argument and bar is the 

estimated value. Number of simulated observations used is 100. 

 

 


