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Abstract 
 
It is often assumed that zero rents are generated in an open-access fishery. There are many 
justifications for this, such as the existence of intraseasonal and interseasonal stock externalities, 
and entry and exit of vessels dependent on positive and negative rents. It is important to consider 
under what conditions the assumption applies, because these determine the benefits of different 
types of regulation, and the way in which open-access conditions are modelled. 
 
Some of the conditions which determine whether within-season rents are maximised under open-
access are examined for the simple condition under which all inputs of the fisher are variable. 
Fishers are modelled as non-cooperative decision makers. It is shown that depending on how the 
fisher’s problem is formulated, there may be no dissipation of within-season rents, no matter 
what the number of fishers. Key decision variables investigated are the rate of fishing mortality 
over a fixed fishing season, the stock to fish stocks down to over a fishing season, and the length 
of the fishing season. A striking finding is that aggregate rent and end-of-season stock outcomes 
change radically when the length of fishing season is added to fishing mortality as a decision 
variable. It is shown that under open-access conditions aggregate rent may be maximised or 
dissipated for alternative but equally simple assumptions about the decision variables. 
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1) Introduction 
 
Two quite different ways are used to characterise the rents generated over a harvesting season in 
discrete-time models of open-access fisheries. Under the first, perhaps more usual, method, 
fishing effort is applied to the extent that rents are fully or partially dissipated. Under the second 
method within-season rents are modelled as maximised with respect to effort. This paper 
considers the question of which approach is correct, or whether the question should really be 
under what conditions or assumptions is each approach correct. 
 
In a recent paper Weitzman (2002) obtains the important result that if the goal of fishery 
regulators is to maximise economic efficiency under ecological uncertainty, taxes rather than 
quotas are the preferred instrument. The result is based on the assumption that the fishery, 
unregulated or regulated, behaves as a myopic rent maximiser for the usual case of unit cost of 
harvesting increasing with declining fish stock. Myopia stems from the inter-period incentive 
under open-access for each fisher to overharvest in the current period, because none can 
appropriate the full gain that otherwise would have accrued from future growth of stock saved 
from capture in the current period. Koenig (1984) refers to this as an interseasonal stock 
externality.  
 
The assumption of current-period rent maximisation is open to question if no allowance is made 
for possible adverse within-period stock effects on the cost per fish caught. An adverse stock 
effect (or congestion effect, or intraseasonal stock externality) occurs if a fisher in expending an 
additional unit of fishing effort reduces stock which increases not only his or her cost per fish 
caught but the cost per fish caught of all other fishers. Too much will be caught if each fisher sets 
effort at the level which equates within-period marginal benefit with marginal private cost rather 
than marginal social cost.  
 
Consistent with unit cost of harvesting increasing with declining stock, a Schaefer harvest 
function with a positive stock exponent is often used to model fishery effort at the level that 
average benefit equates with average cost, or the level at which rents are dissipated, for 
expository purposes (e.g., Munro and Scott, 1985; and Hartwick and Olewiler, 1986), and in 
numerical modelling, sometimes as a result of adjustment of effort over time a positive function 
of rents which are sub-maximal (e.g., Androkovich and Stollery, 1994; Brasao et al. 2000; 
Duarte et al. 2000; Kennedy 1999; and Knowler et al. 2001). 
 
To provide some insight into the questions raised, three sole fisher and open-access cases are 
examined, differing by decision variables: a) fishing mortality as the decision variable applied 
over a fixed harvesting period; b) harvest or end-of–period stock as the decision variable; and c) 
harvesting period as the decision variable, with fishing mortality either also a decision variable, 
or capped. Fishers are myopic, making decisions at the beginning of any season to maximize net 
returns over that season only. Case (a) does not support aggregate rent maximization under open-
access conditions, but cases (b) and (c) do. 
 
To keep the analysis simple, aggregate fishing capacity (or number of fishers or boats) over the 
harvesting season is taken as given and not a function of any rent generated over the season. 
Some studies of unregulated open-access behaviour (e.g., Androkovich and Stollery, 1991) have 
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effort per boat set to maximize aggregate seasonal rent for a given number of boats, but also 
allow free entry and exit of boats so as to drive rent to zero. In the context of the present analysis 
such an approach is an example of maximisation of within-season rents with respect to effort. 
 
The open-access problem is taken to be best treated as a non-cooperative game, following early 
sentiments expressed by Wilen (1985, p. 162): 
 

What I believe is crucial about this approach is the setting of individual decision-
making in a gaming structure. This has not been done in other models of fisheries. It 
is partly a philosophical and partly an empirical issue whether we should model 
fishermen as parametric decision-makers à la standard competitive model or as 
actively strategic decision-makers who consider rivals’ decisions in making their 
own. 

 
 
2) Optimal and competitive fishing mortality over period T 
 
Each of n fishers decides to set their rate of fishing mortality at a constant rate over a period of 
length T so as to maximise their rent over the period, knowing the rate of fishing mortality set by 
all other fishers. The total uncontrollable fishing mortality that the i-th fisher faces is: 

 
n

i j
j i

g m f
≠

= + ∑  (1) 

where m is the rate of natural mortality, and fj is the rate of fishing mortality set by the j-th other 
fishers. 
 
In this section fishing period T is taken as fixed, the same for all fishers, but is treated as a 
control variable along with fi in section 6.  
 
By setting fishing mortality at fi the catch of the i-th fisher is: 

 0

0

0

x exp(( ) )

(1 exp( ) ) /( )

T

i i i i

i i i i i

h f f g t dt

f x f g T f g

= − −

= − − − +

∫  (2) 

 
where 0x  is the start-of-period stock of fish. 
 
The rent accruing to the i-th fisher is: 
 
 0 (1 exp( ) ) /( )i i i i i i ipf x f g T f g cf Tπ = − − − + −  (3) 
 
where p is the price of fish and c is the unit cost of fishing mortality.  
 
The first order condition (FOC) for maximum rent with respect to fi for the i-th fisher is: 
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0

2 (exp(( ) )( ( ) ) ) 0
( )

i
i i i i i i i

i i i

d px
f g T f T f g g g cT

df f g

π
= − − + − + − =

+
 (4) 

 
If for simplicity all fishers are taken to face identical fishing conditions, then by symmetry fi is 
the same for all n fishers. Equation (1) becomes: 
 
 ( 1)i ig m n f= + −  (5) 

 
By substituting for ig  from (5) in (4), the if for maximum rent is identified as the if satisfying: 
 
 2 2

0( /( ) )(exp(( ) )( ( 1) ) ( 1) ) 0i i i i ipx m nf m nf T nf T mT n f m m n f cT+ − − + − + − + + − − =  (6) 
 
Denoting the if satisfying condition (6) as *

if , the total harvest for fixed T is: 
 
 * * *

0     (1 exp( ) ) /( ) i i iH x nf m nf T m nf= − − − +  (7) 
 
and rent for the fishery is: 
 
 * * * *

0 (1 exp( ) ) /( )i i i ipx nf m nf T m nf cnf TΠ = − − − + −  (8) 
 
The end-of-period stock is: 
 *

0 exp(( ) )T ix x m nf T= − −  (9) 
 
The first question to be investigated is how optimal if  varies with n, for T =1. The more 

complex question of how optimal if  and T together vary with n is addressed in section 6. 

Because of the difficulty in obtaining an analytical solution for if , a numerical approach is taken. 
 
 
3) Simulation of competitive fishing mortality for n fishers and m > 0 
 
The parameter values used in the numerical simulation are shown in Table 1. The individual 
fishing mortality if was calculated numerically for the FOC of individual single-period maximum 
rent (condition 6) for values of n from 1 to 100, together with corresponding values of end stock, 
and industry harvest and rent. The FOC are based on the assumption that a Cournot/Nash 
Equilibrium attains for each fisher. That is, each fisher knows the fishing mortality set by all 
competing fishers, treats these settings as beyond their control, and sets their fishing mortality 
accordingly. Results are shown in Table 2 and Figure 1. 
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Table 1: Parameter values 
 

Opening stock 0x  500 
Natural rate of mortality m 0.2 
Price of fish p 1 
Per unit cost of fishing mortality c 50 
Length of fishing season T 1 

 
 
 

Table 2: Aggregate competitive fishing mortality by number of fishers 
                         for natural mortality = 0.2 

 
            No. of 

            
fishers 

 

       Aggregate 
    fishing 

       mortality 

          Aggregate 
           harvest 

 

    
Aggregate 

     rent 
 

        End 
        stock 

 

Length of 
fishing 
season 

n * *
if nf=  

i
H nh=  Π  1x  T 

1 2.35 424.98 307.31 38.90 1.00 
5 7.85 487.43 94.82 0.16 1.00 

10 8.82 488.86 47.75 0.06 1.00 
20 9.31 489.45 23.94 0.04 1.00 
50 9.60 489.77 9.59 0.03 1.00 

100 9.70 489.88 4.80 0.03 1.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Aggregate competitive fishing mortality by number 
                           for natural mortality = 0.2 
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As n increases from 1 (rent maximisation) to 20, aggregate fishing mortality increases 

markedly from 2.4 to 9.3, industry rent declines from 307 to 24, and end-of-period stock falls 
from 39 to 0.04. As n increases from 20 to 100, rent falls to about 5, and end-of-period stock 
falls to 0.03. 

 
 
4) Optimal and competitive harvest 
 
In the approach taken by Hannesson and Kennedy (2003), fishers decide harvest level within a 
period of unspecified length T, for the case where natural mortality is zero. A Schaefer harvest 
function is used to express catch per unit of time as: 
 
 y Ex=  (10) 
 
where E is fishing effort (equivalent to fishing mortality f) and x is stock level. 
 
If the price of fish is p, and the cost per unit of effort is c, then for any stock level x, the cost per 
unit of fish caught is /c x , and rent per unit of fish caught is /p c x− . The rent obtained by 

fishing stock down from stock 0x  at the beginning of the fishing period to 0x H− by the end of 
the fishing period is: 

 

0

0

0 0

( / )

(ln( ) ln( ))

x

x H

p c x dx

pH c x x H

−

Π = −

= − − −

∫  (11) 

 
Again suppose there are n fishers. We want to determine H which results in maximum rent, and 
the competitive harvest ih  of each fisher i that maximises their rent taking the harvests of all 

other fishers j as given. These are given by the solutions to the problems for 1n =  and 1n > , 
respectively. Rent from harvesting ih  is: 

 0 0(ln ln( ))
n

i i j i
j i

ph c x x h hπ
≠

= − − − −∑  (12) 

 
The FOC for ih  for maximum single-period rent is: 
 

 
0

*
0

  /( ) 0

/

n
i

j i
j ii

n

i j
j i

d
p c x h h

dh

h x h c p

π
≠

≠

= − − − =

⇒ = − −

∑

∑
 (13) 
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If all fishers face identical fishing conditions, then by symmetry ih  is the same for all n fishers, 

and equals: 

 

*
0

0

*
0

         ( 1) /

   ( / ) /

/        

h x n h c p

x c p n

nh H x c p

= − − −
= −

⇒ = = −

 (14) 

 
The end-of-period stock is: 
 *

0 /Tx x nh c p= − =  (15) 
 
For the sole fisher problem (n =1), *h is the rent maximising harvest. But total harvest = *nh  is 
also the rent maximising harvest for 1n > . So the fishery is characterised as within-period rent 
maximising, whether there is just one fisher or many. 
 
The result can be rationalised by arguing that all fishers will continue harvesting until stock is 
driven down to the level ( Tx ) at which the return from one more unit of catch ( p ) equals its cost 

( / Tc x ). No fisher will harvest more.  
 
The result is consistent with much standard analysis. For example, McKelvey (1997, pp. 133-
134) refers to what he terms the simplest idealized model of a seasonal fishery. He cites the unit-
profit (or marginal-profit) function ( ) ( )x p c xπ = −  where ( )c x  is the unit cost of harvest 
inversely related to current within-season stock-level x as typical. He notes that for a break-even 
stock level 0S  such that marginal profit with respect to stock = 0 0( ) ( ) 0S p c Sπ = − = , under 

competitive conditions, open-access to the fishery stock will be driven down to 0S by the most 
rapid approach. 
 
 
5) Comparing optimal and competitive fishing mortality with optimal harvest for m = 0 
 
To compare the fishery equilibrium conditions for different n under the two approaches with 
identical parameters, the competitive if  simulation is rerun with m = 0. The results are shown in 

Table 3 and Figure 2. The single-period rent maximising *f for n = 1 results in the same harvest 

as under the competitive h approach. Setting 0,  1 and 1m T n= = = in equation (6), the FOC for 

the  competitive if  approach, gives 0 exp( ) /x f c p− = . This states that the end-of-period stock is 

/c p , which means that the harvest is 0 /x c p− , the same as given by equation (14) for the 

competitive ih  approach. Table 3 shows an end-of-period stock equal to /c p =  50/1 for n = 1. 
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Table 3: Aggregate competitive fishing mortality by number of fishers 
                    for natural mortality = 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Aggregate competitive fishing mortality and industry  
 rent by number of fishers for natural mortality = 0 
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1 2.30 450.00 334.87 50.00 1.00 
5 8.00 499.83 99.70 0.17 1.00 

10 9.00 499.94 49.94 0.06 1.00 
20 9.50 499.96 24.98 0.04 1.00 
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Although the results for both approaches are the same for n = 1, they are quite different for 1n > . 
Unlike in the competitive h approach, total harvest climbs with increasing n in the competitive f 
approach. The question arises as to which approach, modelling fishers as determining 
competitive f or competitive h, might be deemed more appropriate. Both approaches considered 
here rely on Cournot-type behaviour for 1n > , which is to some extent unrealistic and hence 
unsatisfactory. Each fisher commits to individually competitive fi or hi from the start of the 
harvesting period, knowing the levels to which all other fishers have committed, levels which 
they suppose they cannot influence. 
 
An argument against the competitive ih  approach is that no account is taken of the distribution of 
the harvesting effort of each fisher over the fishing period, or of natural mortality. This means 
that each fisher would realise that they would gain over other fishers by collecting their catch 
before other fishers caught theirs. Assuming all fishers are identical means that all fishers would 
collect their equal shares of the optimal aggregate catch instantaneously at the beginning of the 
harvesting period. This might be judged unrealistic, perhaps more unrealistic than assuming that 
fishing effort is applied continuously throughout the fishing period. Koenig (1984) deals with 
this by placing an upper limit on the rate of harvesting. 
 
The analysis in sections 2 and 3 forces fishing mortality to be applied at a constant rate over a 
period of specified length. There is no possibility of each fisher taking their total harvest within 
an instant. Is this an artificial constraint, imposed merely for modeling convenience? Does it 
preclude fishing stock down just to the level at which within-period rent is maximized? In the 
next section, the impact on fishery rent as n increases from one is studied when fishers can set 
the length of the harvesting period as well as fishing mortality. 
 
 
6) Optimal and competitive fishing mortality and harvesting period T  
 
The analysis of section 2 is extended to make iT a decision variable of the i-th fisher as well as 

if in maximising individual rent. The resulting impact on aggregate rent is considered first for 
the sole fisher case (n = 1), and then for the competitive fishery case (n > 1). 
 
If if and m are instantaneous annual rates, 1iT > would imply a harvesting period greater than a 
year. If the addition to the fish stock occurs annually, the feasible range for the harvesting period 
is restricted to 0 1iT≤ ≤ . 
 
In treating iT as an individual choice variable, it is assumed that each fisher supposes that for 

whatever iT  they select, all other fishers will be harvesting for at least as long as iT . This is 
justified if each fisher calculates that they would be disadvantaged if they harvest for a longer 
period than all other fishers because they would face thinner stocks. Accordingly, each fisher 
assumes their uncontrollable fishing mortality throughout iT  is the rate ig , defined in equation 
(1). The FOC for maximum individual rent is: 
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0

* *
0

* *
0

/ exp(( ) ) 0

           exp(( ) ) /

           ln( / ) /( )

i i i i i i i

i i i

i i i

T pf x f g T cf

x f g T c p

T x p c f g

π∂ ∂ = − − − =

⇒ − − =

⇒ = +

 (16) 

 
The second derivative is negative, a necessary condition for maximum rent. 
 
Substituting as before in section 2 the RHS of equation (5) for ig  in equation (16) on symmetry 
grounds gives the optimality condition: 
 
 * *

0ln( / ) /( )i iT x p c m nf= +  (17) 
 
Optimality conditions (6) and (17) were used for determining the rent maximising solutions in 
the case of the sole fisher (n = 1) with respect to f and T separately, and f and T together. Table 
4 shows harvests, rents, and end stocks for the parameter values in Table 1, for positive and zero 
natural mortality. 
 

Table 4:  Rent maximisation (n = 1) with f and T as decision variables  
  for natural mortality = 0.2 and 0.0 

 
Simulation 

run no. 
Natural 

mortality 
Fishing 

mortality 
Length of 
harvesting 

season 

 Harvest    Rent End  
stock 

     m f T fT H     Π  Tx  

        
1 0.20 *2.35 1.00 2.35 424.98 307.31 38.90 
2 0.20 3.00 *0.72 2.16 421.88 313.94 50.00 
3 0.20 * ∞  *0 2.30 450.00 334.87 50.00 
        

4 0.00 *2.30 1.00 2.30 450.00 334.87 50.00 
5 0.00 3.00 *0.77 2.30 450.00 334.87 50.00 
6 0.00 * ∞  *0 2.30 450.00 334.87 50.00 

 
Key: * denotes rent maximising setting; Bold figures denote fixed values. 

 
 
The following points emerge: 
 

a) When f and T are both decision variables, *f  tends to infinity and *T  tends to zero, for 
both m = 0.2 and m = 0.0 (simulations 3 and 6). 

 
b) Harvest, rent and end stock are the same for the cases *f for fixed T, and *T for fixed f, 

for m = 0 (simulations 4 and 5), and for both of the * *,f T cases (simulations 3 and 6). 
The product of  f and T is the same and equal to 2.30. Rent is maximised. 
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It can be shown these results hold generally as they can be deduced from the optimality 
conditions as follows. 
 

a) Substituting the RHS of equation (17) for optimal T in the rent equation (3) and setting 
the full derivative of rent with respect to fishing mortality equal to zero gives *f = ∞ . 

Equation (17) for *f = ∞  gives * 0T = . 

b) For m = 0, or if m is insignificant relative to *f , the optimality condition for f in 
equation (6) is: 

 

20
2

*
0

*
0

exp( ) 0

      exp( ) /( )

      ln( / ) /

i px
fT f T cT

f f

f T c px

f px c T

π∂ = − − =
∂

⇒ − =

⇒ =

 (18) 

 
   and the optimality condition for T in equation (17) can be written as: 
 
 *

0ln( / ) /T px c f=  (19) 

 
Thus for the special case of m = 0, the optimality conditions are the same for f and T. 
Equations (18) and (19) together imply: 
 
 * * * *

0ln( / )f T fT f T px c= = =  (20) 

 
For the parameters used in the simulation runs 0ln( / )px c = 2.30. 
 

Thus in the case of the sole fisher, rent is maximised for all combinations of f and T as decision 
variables if natural mortality is zero, and for f and T as simultaneous decision variables if natural 
mortality is positive and finite. 
 
It was shown in sections 3 and 5 that for the competitive fishery (n > 1) for particular parameter 
values, aggregate rent was not maximised for zero or positive natural mortality when fishing 
mortality was the decision variable and T =1. However it follows from equations (17) and (20) 
that if iT is also a decision variable, rent is maximised not only for the sole fisher case, but also 
the competitive fishery with n > 1. The outcome for rent, harvest and end stock is the same as 
that for the harvest analysis. However, the solution values * * and  0i if T= ∞ = are unrealistic. 

Consider now imposing an upper limit on if equal to if
−

, allowing the n fishers to decide iT  only. 
 

The optimality condition for iT  is given by equation (17) with if
−

replacing *
if , or: 

 

_
*

0

_
*

0

ln( / ) /( )

   ( ) ln( / )

i i

ii

T x p c m n f

m n f T x p c

= +

⇒ + =
 (21) 
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If natural mortality 0m = , aggregate mortality is 
_

in f , and from equation (21)
_

*
0ln( / )iin f T x p c= , which is the same as condition (20) for optimal aggregate rent. Thus for 

1n =  equation (21) is the condition for maximum rent for the sole fisher. For 1n > , *
iT is an n-th 

of *
iT for 1n = , but the aggregate rent is still maximised. The effect of increasing n for the 

parameters in Table 1 but with 0m =  is shown in Table 5 and Figure 3. 
 
 

Table 5: Competitive harvesting period by number of fishers for individual  

  ceiling fishing mortality 
_

2.30if =  and natural mortality = 0 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 3: Competitive harvesting period and industry rent 

 by number of fishers for 
_

2.30if =  and natural mortality = 0 

 

If natural mortality is positive and finite, n fishers fishing at rate if
−

over harvesting period 
*

iT given by equation (21) results in less than maximum possible aggregate rent. However, 
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perhaps unexpectedly, aggregate rent approaches maximum aggregate rent as n increases. The 

reason is that as n increases, m becomes smaller relative to 
_

in f , and condition (21) approaches 
condition (20). The effect of increasing n for the parameters in Table 1 with m reset at 0.2 is 
shown in Table 6. 
 
 

Table 6: Competitive harvesting period by number of fishers for individual  

ceiling fishing mortality 
_

2.30if =  and natural mortality = 0.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
7) Conclusion 
 
The issue of whether within-period rent is maximised under open-access conditions is important 
for the applicability of the result obtained by Weitzman (2002) that fees dominate quotas in 
regulating fisheries subject to ecological uncertainty. Three ways of casting the fishers’ decision 
problem have been analysed, and the way in which rents and end-of-season stock depends on the 
number of fishers has been examined.  
 
Results for the open-access ( 1n > ) problem in which fishing mortality is set for a fishing season 
of fixed length do not support within-season maximisation of aggregate rent. However within-
season rent maximisation does result if the fishers’ problem is to set the season’s harvest, or both 
fishing mortality and season length, but the results imply instantaneous total catch. Setting a 
ceiling on individual fishing mortality and making the decision variable the length of the fishing 
season does result in within-season maximisation of aggregate rent if natural mortality is zero, or 
otherwise approaches it for a sufficiently large number of fishers. 
 
There are doubtless results to be obtained for other ways of casting the problem, such as making 
total harvesting costs increase at an increasing rate as fishing mortality increases.  There are 
obviously many criteria to be considered in formulating the problem such as simplicity in 
expository problems or approximation to reality. However, it has been shown that it is possible 
to find simple alternative formulations of the fishers’ problem which result in within-season 
aggregate rent maximisation or dissipation. 
 

       No. of 
       fishers 

 

   Aggregate 
    fishing 

     mortality 

            Aggregate 
            harvest 

 

       Aggregate 
        rent 

 

     End 
      stock 

 

Length of   
fishing   
season 

  n 
_ _

i
f n f=  i

H nh=  Π  Tx  
*

iT
 

1 2.30 414.04 308.11 50.00 0.92 
5 11.51 442.32 329.15 50.00 0.20 

10 23.03 446.13 331.99 50.00 0.10 
20 46.05 448.05 333.42 50.00 0.05 
50 115.13 449.22 334.29 50.00 0.02 

100 230.26 449.61 334.58 50.00 0.01 
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