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Abstract

A variant of the classical harvesting game, where a ﬁumber of competing
agents simultaneously harvest a common-pool natural resource, is analysed.
The harvesting at each time is a Cournot competition. The critical assump-
tion made in the present analysis is that most (or all) individual participants
maintain a perspective which is wholly myopic. Three cases are analysed:
1) The case of aggressive myopic Cournot competition, 2) co-operation and
3) competition when there is an incumbent player. The development in the
number of active participants is outlined, and stability criteria for a dynamic
Cournot-competitive game are given. The exact deadweight loss due to lack of
co-operation is calculated.

Key words: Dynamic game-theory, Cournot competition, Natural resource

exploitation. JEL: C72, Q22.



INTRODUCTION!

This paper analyses a variant of the classical fisheries harvesting game, where a
number of competing agents (fishing nations, fleets or vessels) simultaneously harvest
a common-pool fish stock, and do so over an extended period of time. The harvesting
at each time is a Cournot competition. That is to say, each nation, in choosing
its current harvest rate, takes into account that the current harvest-landings price
depends on the total harvest at the given time. Consequently landings price depends
on the simultaneous actions of all the nations. The focus is on the harvesting sector
in each nation.

Each nation will also take into account its current cost of harvest, which depends
on the current fish stock biomass. However, the future stock biomass depends upon
the prior history of harvesting, and this circumstance links the evolution of future
harvest costs to current harvest rates.

The critical assumption made in the present analysis is that most (or all) individual
participants in the fishery maintain a perspective which is wholly myopic. That is,
in choosing its current harvest rate the myopic agent does not take into account
this impact of the current harvest on the future biomass trajectory®. Such myopic
behavior may profoundly affect the long run evolution of the harvesting game. Myopic
fisheries are also studied by Haémaéldinen et al. (1986 and 1990) among others.

We believe that this circumstance of myopic decision making often characterises
traditional artesanal fisheries, especially in developing countries. Very often there will

be no entity with the resources (or even the desire) to attempt a serious quantifica-
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would be agents who control the system completely during very short time intervals.



tion of the relation between harvesting intensity and subsequent fish-stock dynamics.
If this relation is indeed significant, but is ignored, then the ongoing fishery may
be seriously sub-optimal. Ignoring the specific biological characteristics of stock de-
mography can have profound implications for the evolution of the fishery, affecting
evolving stock biomass and harvesting fleet structure, determining which agents will
remain viable participants in the ongoing fishery and which will be eliminated in the
continuing competition. An important result in the paper is that we calculate the
exact deadweight loss due to competition compared to co-operation.

In our study we examine an idealized fishery model, where the fish stock dynamics
evolve according to a standard surplus production model, as conditioned by total
harvest. Three cases in particular will be analysed: 1) The case of aggressive myopic
Cournot competition, where all agents lack, or choose to ignore, information about the
dynamic stock demographics. This is typically the case in many fisheries in developing
countries or for distant water fishing nations. 2) Co-operation where the aim is to
maximize the total net revenue from the fishery. 3) Competition where there is an
incumbent agent, for example a nation that is dedicated to keep the fishery sustainable
and therefore takes account of the stock biomass growth function while the others
still do not; for example one coastal state versus a number of distant water fishing
nations. Another example may be a stock that is shared between two nations where
one nation wants to take stock dynamics into account and do dynamic optimisation
whereas the other does not. A case in point may be Namibia and Angola; or even
Norway and Russia.

In each case all participants have full information about the market demand func-
tion, which determines the unit market price as a function of the total harvest. Each
participant also knows the current fish biomass level and the unit cost of harvesting,
as a function of biomass, for all of the other agents as well.

As emphasized, an important feature of the model used here is that the ez ves-



sel landings price at any given time is a function of the combined harvest rate of
all participants. This circumstance, which introduces technical complications (due
to non-linearities in the objective functions) is treated only lightly in the fisheries
harvesting literature, although it is obviously an important aspect of real world fish-
eries. To our knowledge its previous considerations for a harvesting game is that of
Takayama and Simaan (1984), Reinganum and Stokey (1985), Dockner et al. (1989)
and Datta and Mirman (1999). Takayama and Simaan (1984) analyse a dynamic
game involving two countries and a single resource. Reinganum and Stokey (1985)
look at a non-cooperative dynamic game involving n firms who are engaged in the
extraction of a nonrenewable common property resource. Dockner et al. (1989) anal-
ysed a duopoly situation with complete information, and Datta and Mirman (1999)
use discrete dynamics to analyse the effect of biological externalities when there are
many countries harvesting two fish stocks.

The outline of the present paper is as follows. The general model is presented in the
next section. Then we look at the two cases 1) myopic competition, ii) co-operation
and 1ii) the case where one country is dedicated to maintain sustainability. Several

numerical examples are given. Finally the paper is concluded by a summary section.
GENERAL MODEL

Assume that all agents are selling their harvest on the same market but they differ
with respect to their efficiency through the cost function. Let x denote the common

fish stock and h; denote agent k’s harvest. The total harvest of all agents is




where n is the number of active agents®, that is, by definition, agents with positive
harvest. It is assumed that there are no capacity constraints on individual agents.*
This is because emphasis is put on the effects of competition, and capacity constraints
will reduce these effects.

For simplicity, assume a linear market demand function which can be written on

inverse form as

p(h) = Q = qh.

where p(-) is the market price, and @) and g are market parameters. Each agent has

an individual cost function given as

Vi (s, T) = cx(2)ha

where z is the current size of the common pool resource. This implies that agent &’s

net revenue, or utility function, in current value is given by
T = (Q — gh)hy — cx(z) P
which can be rewritten
e = [pe(z) — qhlhy, hy 20, (1)

where py(z) = Q — cx(z) reflects this agent’s efficiency.” The number of potential

agents is defined by the following:

Definition 1 The number of potential agents M = M (x) < oo at some stock level x

18 defined as all agents with py, > 0.

3In the following n is always used to denote the number of active agents.
4This assumption will be relaxed later.
5The results in this paper hold for a general z-dependence in Q and gq.



The dynamics of the common stock is given by
dx
P flz)—h (2)

where f(z) is the biological growth function. A non-trivial steady state exists if
h = f(z) for z > 0. Criteria for stability of the steady state, if it exists, will be
investigated later.

For a myopic agent, k, the objective is simply to maximize 7 at any point in time

given the prevailing stock z. In the case of an incumbent agent her objective is to

/ e Rt dt
0

where 6; denotes agent k’s discount rate and ¢ denotes time. Notice that different

maximize®

agents may have different discount rates which may be quite realistic when the agents

are countries with different economic conditions.
MYOPIC COMPETITION

In this section it is assumed that none of the agents use any of the information they
may have about the biological growth function. In other words, they do not perform
any dynamic optimisation due to the common pool characteristic of the fishery. The
reason for such myopic behaviour may be fourfold. First, as long as there is more
than one agent, there is always an element of "the tragedy of the commons”. The
rationale is: whatever I do not harvest may be harvested by others and therefore I do
not have any incentives to save fish for tomorrow. Under such circumstances no one
have incentives to take the population dynamics of the stock into account. Second,

the agents may simply not have, or do not believe in, information about population

8 Functional dependence of the variables is often skipped to improve the visual appearance of the

equations.



dynamics. The biology of many fish stocks around the world is poorly understood
and many have not even been investigated. Even in the cases of fish stocks that have
been thoroughly studied, biologists from time to time admit that their models where
wrong and the stock dynamics has to be reconsidered from the beginning. Under
such circumstances it is no wonder that the possible participants in the fishery do
not believe strongly in the biological models. Third, it is widely recognised that
commercial fishermen often operate with short time horizons when they make their
decisions. This has been studied by Harms and Sylvia (2001). Fourth, with distant
water fleets (DWF) roaming the oceans seeking targets-of-opportunity just to reap off
any profits that might exist without interest in long-term conservation of the stock,
these will have no incentives to take the population dynamics into account.

The agents are ranked according to their economic efficiencies:

and it is assumed, for simplicity, that the ranking remains constant at various stock
levels. Each agent will choose hy = 0 whenever p;, — gh < 0. As the agents do not
care about the dynamics, agent k chooses the most myopic decision rule which is
to maximize his 7y for all possible values of h_j, where h_j is defined as the other

agents’ harvest by h_y = h — hy.

Definition 2 The general notation L, = > L; = n(L) — Ly is used, where (.)
ik
Ly

denotes arithmetic mean. Further, (L)_, = === is defined as the average of all the

other agents except k.

In order to maximize 7y agent k will solve

87Tk
%—pk~qh"‘qhk—0 (3)




which implies

% —hdhy, k=1.m, (4)

without caring about the dynamics or the future. Expression (4) represents a system
of n equations and n» unknowns, namely the hgs. By summing over all active agents
total harvest can be found:

n (p)

CES) (5).

By substituting this into (4) again the harvest of one active agent appears as:

npr — P—g
— 28 rk 6
k (n+1)q’ (6)

and the profit of one active agent is (from (4)):
Tr = qhi.

This is the Cournot-solution for the case where all agents have information about
each others efficiencies and about the market, but they do not take the biological
growth function into account.

The number of active agents can now be found by the following:

Proposition 1 (Activity Principle) The number of active agents n is the mazimal
wnteger value of n < M salisfying np, > p_, where M is the number of potential

agents. For all active agents py > %1 ), must apply.

The proof of Proposition 1 is straightforward. It is a direct consequence of the
definition of active, (5) and (6). When applying this proposition in practice we start
with the least efficient of the potential agents and work our way down until the
criterion is satisfied.

Proposition 1 has some quite interesting implications. Note, e.g., that if there are

only two potential agents, %1 = %, and both agents are active unless one of the agents
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is at least twice as eflicient as the other one. With three agents, ranked according
to efficiency, Agent 3 is active only if ps > (p1 + p2)/3, and Agent 2 is active only if
pa > (p1 + ps)/3. As n approaches infinity, 1‘—;—1 approaches one from below. In other
words, no matter how many agents there are, a sufficient criterion to be active is that
you are as efficient as the average of the other active agents. This may perhaps not
be too surprising, but with few agents you can be much less efficient than that, and
with only two agents, it is sufficient to be more than half as efficient as the other
agent. Note that the number of active agents varies with the stock size, z, as the
parameters py are functions of x. In other words, the number of active agents is a
function of the current stock size, n(x), at any point in time.

Proposition 1 implies that no active agent can be too far away from the average of
the other active agents. The following corollary derived from Proposition 1 will be

used later.

Corollary 1 No active agent is more than twice as efficient as any of the other active

agents.

Proof: If such a agent exists, then Agent 1 must be more than twice as efficient as

Agent n. From Proposition 1
NPp >Pp_p =p1+Pa+-+Po1 2 p1+ (0= 2)p, = 2p, > pIM

In other words, Agent 1 (the most efficient) can not be twice as efficient as Agent
n (the least efficient). This yields boundaries on the efficiency of one active agent
relative to the average of the other active agents. The boundaries are given by the

next corollary:

Corollary 2 The efficiency of any of the active agents relative to the average effi-
ciency of the other active agents is bounded by

1 Dk

n (P) &




This corollary follows directly from Proposition 1. In the following y; will be

referred to as k’s relative efficiency. The net revenue of one active agent is given by

2 2
npx — P—k 1 n
= h2= —_—— = - — .
e = qhy q<(n+1)q> q[pk n+1<p>}

By summing over all active agents we get the total net revenue from the fishery:

_ 2 _ Mgy (n42) o -
r=a X =20 - - o] G

Dynamic aspect

Although none of the agents does any dynamic optimisation, the development of

the resource is nevertheless governed by equation (2). Using (5) this can be rewritten

dr — ) — n - (p)
E‘{—F(x)'—f() q(n—i—l)' (8)

A steady state, xz*, is characterised by h(z*) = f(z*). The stability of the steady
state depends upon the number of active agents and the biological and economic

parameters. This is summarised in the following proposition.

Proposition 2 (Local stability) A steady state, z*, is locally asymptotic stable if

r o, [0ed)d
oo 1+3)q
Proof: This proposition follows from linear stability, that is F/(z*) = 0 and F'(z*) <
0. |

<0. (9)

As the agents activities are based purely on economic criteria, the existence of a
steady state is not guaranteed. From (8) it is seen that a steady state exists whenever
the biological surplus production equals total myopic harvest. A steady state is

guaranteed if Agent 1’s cost structure is such that costs approach infinity when the
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stock biomass approaches zero; typical for trawl fisheries. If n is constant, as it usually
is close to a steady state, this reduces to fTI < %))—l, see (9). The interpretation of this is
that the relative change in average efficiency must be greater than the relative change
in surplus production in a stable steady state.

The numerical example below is meant to illustrate the development of the stock
over time and how the number of active agents depends upon the stock when the
efficiency parameters are highly sensitive to the stock size. This is typically the case

in search (bottom trawl) fisheries.

Example 1 In this example costs depend strongly upon the stock. The agents are
characterised by px, = 3 — ko—fzé. The slope of the demand curve is ¢ = 7, and the
surplus production function is f(z) = z(1 —z). The development of the stock and the

number of active agents are depicted in Figures 1 and 2.

Monopoly

In this section we compare the competitive situation described above with the case
where one arbitrary active agent is given monopoly rights in harvesting, that is sole-
owner privileges. In particular, it is interesting to compare the net revenue of the
total competitive game with the net revenue of one agent with monopoly rights. This

agent is denoted by m. The following definitions have been used:

1 n
_ 2 _ /.2 _ 2
k#m
B? D 1
c?: = - i = 1—=,2}.
ms Y Ame( n>

A,, is the arithmetic mean and B2 is the quadratic mean (root mean square) of the

other agents’ efficiencies. The term y,, is Agent m’s efficiency relative to the average

11
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FiG. 1. Illustration of Example 1. Stock development over time with two different

ingtial stocks (0.6 and 0.1 respectively). Steady state is 0.32.

of the others, and the boundaries on y,, are derived from Corollary 2. We also use

the relationships

np) =lm+n-1dn n(p’")=[y,+(n—1)Cp] 4.
With this notation the total net revenue from a fishery with n agents can now be

rewritten

A2
g
(n—1) {n—l—l Cl—(n—1)(n+2)}]

n’+n—1)y2 —2(n—1)(n+2) ym+ (10)

12



FiG. 2. Illustration of Example 1. The number of agents as a function of the stock.

The steady state stock level if 0.32 and the steady state number of agents is four.

By comparison, if one of the agents has a monopoly in the resource, her net revenue

will be

Tm

2 42
pm m 2

Whether one of the agents can generate more or less profits than the competitive
fishery depends on her relative efficiency ¥,,. It turns out that the number of four

active agents becomes important. This can be stated more precisely as follows:

13



Proposition 3 Forn <4

2n+6=
3n+5

Yr < n

18 a sufficient criterion for an active agent, k, not to be suited as monopolist, i.e. not

to generate more profit alone than the competitive pool can do.

For n > 4 this criterion will conflict with the Activity principle (yx > D—T_;l) What
this proposition says is that the efficiency of an active agent can not be too far below
the average of the others if she shall be able to generate more net revenue as a
monopolist than the competitive fishery can. The proposition is valid for any n > 1,
but it is not binding for n > 4. This is because the restriction given by the Activity
principle is stronger than the restriction above when there are more than four agents.
The proof can be sketched as follows: Assuming that (10) is no greater than (11) and

7

using the well-known’ inequality C2, > 1, implies

(3n% +2n — B)y2, — 8(n — 1)(n 4 2)ym + 4(n — 1)(n + 3)

= (n=1)Bn+5)Um —2)(Um—1) <0=ym > 1.

In other words, the criterion y; < 7 is sufficient to state that agent k can not produce
more net revenue as a monopolist than the pool. The criterion y; < 7 is impossible
to fulfil for more than 5 agents. From Corollary 2 we have y, > 1 — % A necessary
condition for Proposition 3 to be meaningful is that n > 1 — % which implies n < 4.
The two next examples show that Proposition 3 has non-trivial implications. In these

examples the pys are independent of z. This is typically the case in schooling fisheries.

Example 2 Four potential agents are characterised by [py, p2, ps,pa) = [3,2,2,1] and
q = 1. Only the first three are active as Agent 1 is more than twice as efficient as Agent

4. Agent 3 is active as 3ps =6 > p_s = 5. From (6) we get hy =2 and hy = hy = §

"See, e.g., proposition 6.12 in Folland (1984).
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and h = i. From (1) my = %—g and 7wy = Ty = 11—6 and w = %g. As a monopolist Agent

1 would generate m; = % which is more than with competilion whereas agents 2 and
3 would generate mg = w3 = 1 which is less than with competition. This can be seen

directly from Proposition 3.

Example 3 FEight potential agents are characterised by [p1, p2,Ps,Ps,Ds, Pe, P7, D8] =
[1.25,1.20,1.15,1.10,1.05,1,1,1] and ¢ = 1. Nowy = £ > n = £, and hence no
agents can be excluded as unsuited as monopolists. The total profit with competition, .
m = 0.185 is less than what agent 8, the least efficient one, would generate as a

monopolist, which is g = 0.25. From the Activity principle it is found that all eight

are active agents.

It is seen from the last example that the propositions derived so far are not suf-
ficiently strong to cover the case with many active agents. The next proposition,
however, which is based on a priori knowledge about the potential agents’ efficiencies
only, give both necessary and sufficient conditions for when an active agent is suited

as monopolist.

Proposition 4 A necessary and sufficient condition for an active agent to generate
more net revenue than the total net revenue generated by the competitive pool (be

suited as a monopolist), is

1
Cc? <1 d Ym m < Um
™ +3n+5 and Ym < Ym <7
where
4n 4+ 8 _____4n—|—8
gﬂ_3n+5_€m’ ym_3n+5+§m
and the real value
n+2 5
§m—3n+5\/3n—|~6 (3n +5) C2.
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If £,, is imaginary, then C2, > 1+ 3—n1;r3, and the agent is unsuited as monopolist.
Note that Proposition 4 contains Proposition 3 as a special case as C%, > 1 no matter
how many potential agents there are. For n > 4 only Proposition 4 applies.

The proof for Proposition 4 follows directly from equations (10) and (11). The
difference between the competitive pool’s profit and the monopolist’s profit is

_ _ (n—1)(3n+5)A42, n+2\>
e Ty {(ym”43n+5> _53”}

which gives the proposition directly. Proposition 4 is applied in the next example.
This example is representative of a fishery with many individual vessels of different

size, for example some large purse seiners and many small coastal seiners.

Example 4 Consider a game with 1101 potential agents whose efficiencies are given
by pr = 1.1 — 0.001 - (k — 1). From the Actwity Principle it is found that there are
46 active agents. From Proposition 4 [Ym,Ym| = [0.69,1.99]. Hence all the 46 active

agents are suited as monopolists.

It is seen from the definitions that £, decreases and ¥y, increases with C2, as long as
they are real values. This means that there exists a value of C?, that makes Ym = 1. If
C?2, is greater than this value, then either Ym > 1 or &, takes an imaginary value. In
both cases there will exist active agents who are unsuited as monopolists. By solving

the equation y,, = 1, the following corollary is found:

Corollary 3 If an active agent, m, is less efficient than the average of his competitors

and C2, > 1+ Z(?#i)?: then this agent is unsuited as monopolist.

The above corollary represents a sufficient condition for unsuitability as monopolist
no matter how many agents there are.
It is relatively easy to construct examples that show that it under certain circum-

stances is possible even for an inactive agent to be suited as a monopolist.
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Example 5 Let there be 8 potential agents. There are 7 equal agents with efficiencies
p1 = - = pr = 1, and one agent with 20 % lower eﬁicz’ency, ps = 0.8. Then by the
Activity Principle it is seen that this agent is inactive. However, by inserting into the
expressions for net revenue it is seen that agent 8 generates more revenue alone (as

a monopolist) than the competitive pool together.
CO-OPERATION

In this section it is assumed that the agents co-operate, but they still act myopically. |
In the case that the most efficient agent has the capacity to take the total optimal
harvest, it will be left to this agent to do so, and the optimisation problem is similar
to the sole owner or monopolist referred to above. As Agent 1 is the most efficient
agent, the optimal harvest is h = p;/2q and the total net revenue is %. This is a
rather trivial case, and the distribution of the net revenue is the only question that
remains to be negotiated.

In the case that the agents do have capacity constraints, they will fill up their
capacities according to their efficiency. Let each agent’s fixed capacity be denoted
Ki, Ko, ... Further, let us assume that n agents are needed, that is

h= hm, hn<Kn, ne{l,.. M}

m=1
The objective is to maximize

n

= Zﬂm = Z (pm _qh‘)hm = mehm - qh2'
m=1 m=1

m=1

The solution to this problem is to let the agents fill up their capacities according to
their efficiencies. Total harvest will then equal the sum of the capacities except for

the last active agent who may not fill up her capacity. The problem can be rewritten
max (m), hm € [0,K,], me{l,..n}
14eeeyiln

hy = 0=h,=0 m>k, h,=K,= h,=K,, m<In.

17



Let k, be used to denote the sum of the n first capacities (k9 = 0). The solution
with respect to total harvest and the total number of agents can then be summarized

in the following proposition:

Proposition 5 In the case that the agents co-operate, but still act myopically, the

number of active agents, n € {1,2,3,....}, is determined by the capacity constraints

Dn ’
n— — < ny 12
Rp—1 < 2q K. ( )

and tolal harvest is

h="2r
2q

The double inequalities in (12) are mutually exclusive. If no solution exists, either
all potential agents are active with full capacity or there are no active agents at all.
Proposition 5 follows directly from Kuhn-Tucker’s sufficient conditions. A sketch of
the derivation of these results is given in appendix.

The deadweight loss due to myopic competition compared with myopic co-operation
is defined as the difference in producers’ surplus as we are ignoring the consumers’
surplus in this paper and concentrate on the harvesting sector. The distribution of
the surplus in the case of co-operation is not a topic in this paper.

The relative deadweight loss is defined as D =1 — %;’——’_’;% where T¢omp 1S net revenue
with competition and 7e,—op is net revenue with co-operation. The deadweight loss
is highest in the case where capacity constraints are not binding, that is m.,—op = my
and Agent 1 acts as a monopolist. This yields from (11) and (7)

D=1—4n. (@)2 [<p22+ L >
41 P (n+1) (n+1)
The right-hand side of the inequality (lower bound) is derived from noticing that

2
%’} > % from Corollary 1 and E;g > 1 from C2, > 1, cfr. Footnote 5. An interesting

18



special case is when all active agents are equal, and in this case D =1 — ﬁg. The

deadweight losses for 2, 3 and 4 active agent are 11 %, 25 % and 36 % respectively.
The deadweight loss referred to above is due to competition only. Capacity con-

straints in this context is a technological matter that contributes to reduce the dead-

weight loss.
AN INCUMBENT AGENT

This section looks at the case where one agent, m, is incumbent and performsl
dynamic optimisation whereas the others do not. In this case Agent m must take
strategic considerations into her decisions. Incumbent in this context implies that
this agent takes on an obligation to achieve a steady state if possible.

This may, e.g., be the case when there is one home-fleet and several possible ”in-
vaders” who also have access to the resource. These invaders may represent distant
water fleets (DWF) who roam the oceans seeking targets-of-opportunity with intent
to reap the profits wherever it occurs without interest in long-term viability of the
stock. As the DWFs come from far away they typically, but not necessarily, have
higher costs than the incumbent nation. This may either be higher fixed costs asso-
ciated with moving the fleet or opportunity costs. It is assumed that all agents know
each others efficiencies, and that the DWFs have the same myopic utility functions
as in the previous sections. It is further assumed that the incumbent agent, m, is one
of the active agents.

The other agents, apart from m, know that m is non-myopic, as this can be ob-
served, and Agent m knows that the others are myopic. Let us assume that there are
n — 1 active myopic agents, and each of them does the same optimisation as earlier

given by (3). Adding all the active myopic agents yields

n(p)—pm—(n—l)qh—q(h—-hm)=0®h:—<§l—i—z+l—j§n—. (13)
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This represents total harvest as a function of the stock, z, for all values of %’fﬁ The

dynamic optimisation problem for the incumbent, non-myopic agent is now
max " e~ omt 1+ 1 Dm — (P)| hm — Ip2 \ gy
hm Jo n) " moopm

dz _ oy P Pm_ hm
%_f(x) q+nq o

subject to

In the section ”Myopic competition” it was shown that total harvest is given by
(5) when all behave myopically. If one of the agents behaves non-myopically, total

harvest is

Py
n

ngq

Depending on the efficiencies of the myopic agents, the non-myopic agent may be
faced with three different situations:

Case 1: Steady state is not possible because the total harvest of the myopic agents
is greater than the surplus production, that is h_p, > f(z) for all z where f(z) > 0.

Case 2: Steady state is not possible if all, including m, behave myopically. Steady
state may, however, be achieved if Agent m reduces her harvest or does not harvest
at all.

Case 3: Steady state is achieved even if all, including m, behave myopically.

Case 1 is rather trivial as the stock will inevitably go extinct, and the incumbent
agent may just as well play along and mine the resource in an optimal manner. In
Case 2 the incumbent agent is obliged to provide a steady state. If her discount
rate is low, this may also be the optimal policy, and with zero discounting she will
certainly benefit from a situation with a steady state. Case 3 is in many ways the most
interesting case. In this case the obligation to provide a steady state is not a binding
constraint. Therefore, if the incumbent agent deviates from myopic behaviour, it

means that she is benefitting from it. This can be restated as follows:
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Corollary 4 The incumbent agent benefits from non-myopic behaviour if there exists

a steady-state also when all agents, including the incumbent, behave myopically.

This corollary simply follows from the optimisation. The alternative may have been
optimal mining of the resource on the part of the incumbent, but this possibility is

excluded by the definition of incumbent. Let us now make the following definition:

Definition 3 Sustainable rent for the incumbent agent, S(x), is defined as Agent m’s
net revenue for any stock level as long as the stock does not change, in other words

when total harvest is equal to surplus production (h = f).

Agent m’s net price is then p,, — ¢f > 0 in order for m to be active. From (13)

hm =nf — p‘Tm. Hence,

50) = (o - af) (07 - 22).

The sustainable rent is positive if and only if

This interval exists if Agent m is an active agent and not the only active. As S(z) is
continuous, it must also have a maximum in this interval. This leads to the following

proposition:

Proposition 6 In Case 3, Agent m’s sustainable rent, S(z), is greater than Agent

m’s corresponding myopic net revenue in the myopic steady state.

Proof: In the myopic steady state total harvest is given by (5) which must equal

f(z). Agent m’s net revenue is given by
1
T = —q— (Pm — qf)z.

21



Evaluating S(x) for the same stock level yields

5) 7 = % (om0 ] -~ G — 4] = 1+ 1) (1-3) (= af) £ >0 m

The implication of this proposition is that at the myopic steady state the incumbent
agent, m, can benefit from deviating from myopic behaviour but still stay at the same
steady state. However, she can do even better than that by moving away from this
steady state and towards the optimal dynamic steady state.

Next we wish to find the optimal dynamic behaviour of the incumbent agent. Fol-
lowing the approach outlined in Sandal and Steinshamn (2001) it is possible to find
the optimal harvest for the incumbent agent as a feedback control law (function of
the state variable). If the incumbent has a discount rate of zero, the optimal feedback

harvest can be given explicitly as

hun(z) = max |0, nf — p*Tm — sign(z* — 2)\/(S* = 5) - n/q (14)

where S* = S(z*) = max S(z). The expression for the feedback rule follows from the
fact that the optimal Hamiltonian is constant with zero discounting. When applying
this rule it is imperative to keep in mind that n = n(z) is a step function determined
by the Activity Principle (Proposition 1). As we know that the maximum of S is an
interior solution, we can use the maximum principle to eliminate the costate variable

and find the feedback rule given by (14). A proof of Catching-Up (CU) optimality in

8

the case of zero discounting, applying a version of Mangasarin’s Sufficiency Theorem®,

is given in Sandal and Steinshamn (2001). This feedback rule will be used in the

numerical examples in the next section.

8Theorem 13 in Seierstad and Sydsseter (1987).
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Numerical illustration of the case with an incumbent agent

In this section a numerical illustration of the case with one incumbent agent will
be given, and this will be compared to the case where all agents act myopically. It is
assumed that the discount rate is zero and that the incumbent agent has dedicated
herself to aim for a sustainable fishery if possible. As long as the discount rate is
small compared to the intrinsic growth rate of the fish stock, discounting will only
have minor effects on the optimal control, see Sandal and Steinshamn (1997).

In this example there are five potential agents, and the numerical specification is

as follows:

0.28 0.30 0.32 0.3 0.40
p1=1——,p2= - b3 = —_:p4=1__;:p5= - 'aq=1a
T T T x Z

and the biological growth function is the rescaled logistic function

f(z) =z(1l — x).

The rescaling implies that the carrying capacity is one, the intrinsic growth rate is one
and maximum sustainable yield is 0.25; see Clark (1990). In other words, the stock
is measured relative to the carrying capacity, and time units are measured relative to
the biological clock; i.e. as the inverse of the intrinsic growth rate.

Agent 1 is the incumbent, and it is interesting to compare the case where all
three behave myopically with the case where Agent 1 behaves non-myopically. The
development in the number of active agents when all behave myopically is illustrated

in Figure 3.

Figure 4 shows surplus production and the sole owner outcome with Agent 1 as
the sole owner, total harvest and Agent 1’s harvest when all behave myopically, and

total harvest and Agent 1’s harvest when Agent 1 is incumbent. Note that the steady

23



0 02 0.4 0.6 0.8 1

Fic. 3. The development of the number of active agents as a function of the stock

when everybody behaves myopically.

states, both when all are myopic and when Agent 1 is incumbent, are to the left of msy
(maximum sustainable yield), whereas with a sole owner the optimal steady state is
always to the right of msy when costs decrease with z and there is a reasonably small
discounting. An interesting, and somewhat counterintuitive, result is that the steady
state is characterised by a less conservative policy (lower standing stock) when Agent
1 is incumbent than when all behave myopically. However, for lower stock levels the
policy when all behave myopically is less conservative than when Agent 1 is non-
myopic and behaves strategically.

Agent 1’s incumbent harvest is a stepwise function where the steps occur at the
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Fic. 4. Surplus production, sole owner’s harvest, total harvest when all are myopic,
total harvest when agent 1 is incumbent, Agent 1’s harvest when she is myopic and

Agent 1’s harvest when she is incumbent.

entrance of new agents. At low stock levels the incumbent is alone and can benefit
from a small harvest both in that she gets a high price and that the stock builds up
fast implying lower costs. As new agents enter, Agent 1 will increase her harvest in
order to meet the competition and reduce the harvest of the newcomer. This will
reduce the price but, at the same time, the build-up of the stock is slower which will
postpone the entrance of even more participants. Fventually the fishery goes into a
steady state, in this example with three active agents. Figure 4 also shows by how
much Agent 1 increases her harvest each time a new agent enters, and it is seen that

this is quite substantial.
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SUMMARY AND CONCLUSIONS

In this paper we have investigated a fishery game where the market price depends
on total harvest and the participants act myopically in the sense that they do not take
stock dynamics into account in their decisions. The model has also been extended to
include the case where one participant takes the stock dynamics into account whereas
the others do not. The number of active participants out of the potential has been
endogenously determined. One of the main conclusions from this analysis is that both
the stock development and the number of active participants are heavily dependent
upon the individual efficiency parameters. With two agents one must be twice as
efficient as the other in order to exclude the other. With a large number of agents,
on the other hand, one must be as efficient as the average of the rest in order to be
active. This implies that the participants must have similar efficiencies in order to
accommodate a large number of active agents.

With one incumbent agent, the incumbent benefits from not being myopic if there
also exists a steady state when everybody behave myopically. However, the steady
state when all behave myopically may be less conservative (lower standing stock) than

when one of the participants is non-myopic.
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