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Abstract

This report analyses the factors explaining productivity and efficiency differences across
salmon aquaculture farms, with an emphasis on agglomeration externalities. We specify a
stochastic frontier production model with agglomeration indexes included in both the frontier
production function and the technical inefficiency model. The frontier model is estimated on a
rich panel data set with 2,738 observations on 577 farms. Our results confirm the importance
of agglomeration externalities for the productivity and technical inefficiency of salmon farms.
Both frontier output and technical efficiency increase with increasing regional industry size.
There is a negative relationship between overall productivity and regional farm density,
suggesting the presence of negative biological congestion externalities. These results have
implications for the Norwegian government’s regulation of the industry, since the government,
to a large extent, has determined the spatial distribution of salmon production through a
licence system.
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1. Introduction

During the 1990s, several empirical studies of agglomeration externalities have appeared in

the literature.1 These studies hypothesized that there is a positive relationship between the size

of an industry, or industry agglomeration, in a region, and externalities among firms

belonging to the regional industry that lead to increased productivity. Such externalities can

be among competing firms, among firms and their vendors, or among firms and their

customers.

Our empirical analysis focuses on a primary production sector – salmon aquaculture.

The notion that primary production sectors (e.g., agriculture and aquaculture) are

technologically less sophisticated than manufacturing and certain service sectors has become

obsolete with the increasing use of computer-based technologies and bio-technologies in the

former sectors. This development may have lead to the emergence of external economies that

were previously not present in primary production sectors.

Our study of Norwegian salmon aquaculture extends the empirical literature on

agglomeration economies in three directions. First, we measure agglomeration externalities,

or “localization” economies, using firm-level panel data instead of aggregate industry data.2

Hence, we avoid aggregation biases associated with internal returns to scale and the

assumption of cross-industry homogeneity for input parameters of the production function,

which also influence the estimates of external returns to scale (Burnside, 1996). Second, we

separate the effects of agglomeration externalities on the production frontier and technical

inefficiency. Previous studies have estimated average production functions. Third, we provide

empirical evidence for a primary production sector. Although, empirical analysis of external

effects have generally been undertaken for manufacturing sectors, there are also pervasive

reasons to hypothesize the presence of such effects in primary sectors due to technological

sophistication, specialization and indivisibilities associated with both physical capital and

labor. We assert that this is the case for the salmon aquaculture industry.

We employ an unbalanced panel data set with 2,738 observations on 577 salmon

aquaculture farms observed during the years, 1985 to 1995. The farms were observed from

one to eleven years. Information on the age of the farm, regional location, production level,

1 See, for example, Caballero and Lyons (1992), Ciccone and Hall (1996), Paul and Siegel (1999), and other
studies cited in Eberts and McMillen (1999).
2 Localization economies are external to the firm but internal to the industry. Another category of agglomeration
economies, which is external to both the firm and the industry, is termed “urbanization economies”. See Eberts
and McMillen (1999, pp. 1460-63) for a discussion of different types of agglomeration economies.
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input levels, costs and revenues are included in the data set. Several econometric production

model specifications are estimated to test hypotheses on productivity convergence.

Finally, we estimate model specifications with internal and external factors that can

influence productivity. The external factors we consider are regional industry size (measured

by employment) and farm density in the region. We assert that the possibilities for the sharing

of industry infrastructure capital and exploiting external economies of scale are closely linked

with these two regional industry indicators.

The report is organized as follows: Section 2 provides a further discussion of some of

the issues raised in the introduction. The empirical models are presented in Section 3. Section

4 presents the empirical analysis. A summary and conclusions are provided in Section 5.

2. Model Specification Issues

This section discusses agglomeration externalities and other issues that have implications for

the specification of the production models in this report.

In the empirical analysis, we compare the performance of salmon aquaculture

producers in eight regions (see Table 1). These regions are listed according to their location

on the north-south axis, from the southernmost county of Rogaland (R) to the northernmost

counties of Troms and Finnmark (T&F).

There are substantial cross-regional differences in the size of the salmon aquaculture

industry and the spatial concentration of production (see Table 1). This is important if there

are external economies of scale.3 Sources of external economies are indivisibilities associated

with tangible and intangible capital inputs, such as physical industry infrastructure capital,

research and development, knowledge spillovers (i.e., learning from others) and specialized

human capital. Firms sharing these types of capital inputs have savings on materials and labor

inputs, and a reduced need for internal investments in certain types of capital equipment.

3 For discussions of these issues, and for empirical testing of the contribution of external economies, see
Caballero and Lyons (1990), Basu and Fernald (1997), and Paul and Siegel (1999). For an industry with constant
internal (or private) economies of scale, external economies of scale are present if a doubling of inputs by all
firms more than doubles their outputs.
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Table 1: Summary Statistics for the Sample Data on the Salmon Farms, 1985-1995.
Variable Definition (units) Entire sample Region**

Mean Std.Dev. R H SF MR ST NT N T&F
Output:
Y Production (kilo) 446272 343315 397125 534669 461943 484401 423636 355822 423330 390020

Inputs:*

XM Materials (real NOK) 1129784 1155988 902707 1296237 1035949 1243136 1225244 975604 1135321 1002477
XF Feed (kilo) 404061 308583 355077 499627 416575 445772 381325 320740 377059 334176
XK Capital (real NOK) 2691533 2423516 2064716 3248969 2746974 2871428 3422400 2247598 2215159 2411986
XL Labor (hours) 7142 3889 5731 7082 6755 7214 8536 7603 7270 6936
XI Infish (kilo) 171620 128723 155447 189866 170414 196107 167916 141812 163586 160746

Farm characteristics:

Year 1990.20 3.10 1990.63 1990.47 1990.25 1990.20 1989.66 1989.45 1990.05 1990.66
Year of establishment 1981.65 6.21 1982.29 1980.32 1983.14 1980.02 1978.10 1981.19 1983.14 1985.03
Age of farm (years) 9.55 6.06 9.33 11.15 8.11 11.18 12.56 9.27 7.91 6.64
No. of years observed 6.35 2.67 6.92 6.54 6.98 6.78 5.96 6.34 6.04 5.13

Region characteristics:
Regional cumulative production (tonnes) 78400 69571 40454 141456 66637 96441 48006 24970 87888 39552
Regional production previous year (tonnes) 15601 11391 7676 27379 12922 18766 9471 5300 17852 9679
Regional employment (1000 man-hours)*** 749.82 297.24 342.23 1151.72 550.81 866.87 557.68 399.10 935.45 572.62
Farms / Square km sea area**** 0.017 0.011 0.027 0.035 0.018 0.020 0.009 0.013 0.005 0.004
Production (tonnes) / Square km sea area 3.96 3.94 4.56 9.45 4.16 4.89 1.62 1.81 1.08 0.57
No. of farms in region**** 87.86 30.59 54.84 123.99 66.40 90.73 65.78 46.23 112.72 82.80
Sea area in region (sq. km) 8721 7536 1998 3520 3724 4646 7259 3645 20683 20622

The numbers of farms and observations are 577 and 2738, respectively.
* Labor is measured as the number of paid and unpaid hours worked. Feed is obtained by dividing feed costs by the price of a common fish feed (“Edel”) for the years 1985-93. Fish is measured
by the stock of fish (in kg) in the pens in the beginning of the year. Capital is measured by the replacement value of capital equipment.Materials are measured by expenditures on maintenance
and repairs, electricity, office equipment, rent of equipment and buildings, etc. Capital and materials are inflated to 1995 prices by use of the consumer price index (CPI).
** Regions: Rogaland (R), Hordaland (H), Sogn og Fjordane (SF), Møre og Romsdal (MR), Sør-Trøndelag (ST), Nord-Trøndelag (NT), Nordland (N), Troms and Finnmark (T&F).
*** Regional employment includes all stages of salmon production (broodstock and roe, fry, smolts, and farmed fish).
**** Only producing farms are involved.
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Salmon aquaculture is a capital-intensive industry. Several types of capital equipment

used by the industry are characterized by lumpiness, where full capacity utilization requires

that several farms demand their services.4 The industry is also a heavy user of advanced

computer-based technologies for different operations in the production process (Dietrichs,

1995). Moreover, it demands specialized expertise in management, export marketing,

production monitoring, veterinary services, biology, etc. Provision of specialized services to

the industry requires a certain minimum market size. Since the Norwegian industry is spread

over a long coastline, with high transportation costs for factors of production, the relevant

input market is generally the regional market. It can be asserted that an increase in the size of

the regional salmon aquaculture industry will lead to the provision of more productive

specialized physical and human capital inputs.

Another source of external economies is knowledge spillovers. Producers may not only

learn from their own production experiences, but also from those of others. The extent of

external knowledge spillovers should increase with farm density, which is considered in one of

the model specifications below. Finally, producers may learn from other agents in the industry

infrastructure. Feed manufacturers, veterinarians, salmon fingerling producers and researchers

may be sources of knowledge on different aspects of the production process for salmon

farming.

Industry-specific infrastructure is, to a large extent, organized in regional units. This is

the case for government agencies that monitor and assist fish farms on disease treatment,

environmental issues (e.g., farm location) and other matters that affect farm performance. The

Norwegian Fish Farmers’ Association, which is organized in regional units, is involved in

training programs and dissemination of knowledge to fish farmers.

There are several other reasons for using a regional division for the Norwegian salmon

farming industry. First, regions have different biophysical conditions. This applies particularly

to sea temperature and water exchange, which are two important determinants of salmon

growth and mortality. The average sea temperature is significantly lower in the northern

counties than in the southern counties. The growth rate of salmon increases with sea

temperature. On the other hand, due to tidal currents, the water exchange is higher in the

northern regions than in the southern regions, implying that the supply of clean water and

oxygen is higher in northern regions. Biophysical shocks, such as disease outbreaks and algae

blooms, tend to be spatially correlated. Diseases are usually first transmitted to neighboring

4 Examples of lumpy capital inputs are vessels which transport salmon fingerling and salmon feed to the farms,
vessels which transport live fish from the farms, and slaughter facilities.
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farms, and the probability of contagion is positively related to the density of farms. Density-

dependent disease externalities can be regarded as a special type of congestion externalities. In

this report, we explore whether positive or negative density-dependent externalities dominate

in salmon aquaculture. Historically, disease losses have not been evenly distributed along the

Norwegian coast, but were concentrated in certain regions. In our econometric production

model, we use region-specific effects to account for differences in biophysical conditions.

Regions also entered the industry at different stages, which means that there are cross-

regional differences in average farm age. If learning-by-doing effects are present then age

differences may lead to productivity differences. We include farm age in the production model

to account for age-dependent effects.

Government regulations have played an important role in determining the spatial

distribution of farms along the Norwegian coast. When salmon farming became economically

viable in the early 1980s, a large number of entrepreneurs applied to the Norwegian

government for licences to establish farms. The central government decided the number of

licences that should be awarded to each region, while regional/local authorities determined

which entrepreneurs should obtain licences and the location of farms in the region. Licence

owners could not move the farm to another location or region, or sell the licence without a

permit from the authorities. It can be asserted that the government regulations produced a

spatial farm distribution that would not have emerged with a national licence auction system

or free entry. It is natural to ask what effects regulation has had on the productivity of the

industry. Are there welfare losses due to higher marginal production costs associated with the

current spatial industry configuration?

There are some conceptual problems associated with the specification of external

effects in a production frontier model. The literature that deals with external economies, or,

more specifically, agglomeration effects, generally includes an external economy index in the

production function and ignores inefficiency. For example, Caballero and Lyons (1990)

specify the production function, y = f(x; E, t), where x includes inputs; E is an external

economy index; and t is a productivity index. Inefficiency has been a less relevant issue for

most empirical studies of external economies, since they, unlike this study, test hypotheses

using aggregate industry data. Important questions are the following. Do external effects, in

the form of information spillovers among firms, only lead to the transmission of existing

knowledge which is already embodied in the frontier (best-practice) production technology? If

this is the case, then knowledge spillovers lead to a reduction in firms’ technical inefficiency

relative to the production frontier that represents efficient input use with the best-practice
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technology. On the other hand, could information spillovers be of a nature and processed in a

way that leads to the creation of new knowledge which is not already embodied in the frontier

production technology? In this case, the production frontier will shift in a positive direction,

leading to an increase in maximum output conditional on a given level of inputs. Finally, to

what extent are information spillovers and new knowledge creation from this localized? With

localized information spillovers and knowledge creation the production frontier becomes

region-specific, conditional on an index representing locally generated knowledge.

A general specification of the production model that accounts for the technical

inefficiency and other factors discussed above is

( ) ( )UVtEDfy r −⋅= exp,,;x ,

where f(⋅) is now the production frontier function; Dr is a region-specific effect (regional

dummy), capturing regional biophysical conditions (e.g., temperature and tidal water) and

other more or less time-invariant factors influencing productivity; E is an external economy

index; t is a time-trend variable, representing technical change; V is a traditional random error

term; and U is a non-negative random variable associated with technical inefficiency of

production. In its most general form, U is defined by

U = U(x, AGE, E),

where AGE is the farm age; and U(⋅) represents a function of the variables, x, AGE and E.

With the above specification, the production model allows agglomeration effects to influence

both the production frontier and the level of technical inefficiency.

Different measures have been used for the external agglomeration effect, E. Caballero

and Lyons (1992) employed aggregate manufacturing output as agglomeration index when

analyzing data from a two-digit manufacturing sector. Ciccone and Hall (1996) used a spatial

density of employment index as the external-effects index to explain differences in labor

productivity across US states.5 In our analysis of firm-level salmon aquaculture data, we

employ both the size of the regional industry and the spatial concentration of production

activity as regional agglomeration indexes.

5 Eberts and McMillen (1999, pp. 1480-1483) discuss the measurement of agglomeration economies in urban
areas.
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3. Empirical Model Specifications

Three different empirical models, denoted A, B and C, are estimated in this report. These

models are specified with both a stochastic frontier production function and a technical

inefficiency model, following Battese and Coelli (1995). The models differ with respect to the

specification of agglomeration effects.

The specification of the stochastic frontier production function is:

(1) lnyit = 0β + ΣrβrDr + Σkβklnxkit + ΣjΣk≥jβjklnxjitlnxkit + βtt + βt2t2 + βt3t3 + Σkβktlnxkitt + Er +

(Vit - Uit), i = 1,..., N; t = 1,..., T,

where lnyit is the natural logarithm of salmon output of farm i in year t; Dr is the dummy

variable for region r (r = H, SF, MR, ST, NT, N, T&F); lnxkit is the logarithm of input k, where

k = F, I, K, L, M represent the five inputs, fish feed, fish stock at the beginning of the year,

capital, labor, and materials, respectively; Er is an agglomeration index to be defined below;

and the βs are parameters to be estimated. The intercept for region r is β0+βr , where β0 is the

intercept for the base region, Rogaland. The production frontier may shift over time according

to the values of the parameters, βt, βt2, βt3 and βkt. The Vits are random variables that are

assumed to be independent and identically distributed and have N(0, 2
Vσ )-distribution. The

translog form for the terms involving the input levels, xkit, implies that we do not impose any a

priori restrictions with respect to the internal returns to scale. The Uits are non-negative

random variables, which account for technical inefficiency in production, and are assumed to

be independently distributed, such that Uit is the truncation (at zero) of the N(µit,σ2)-

distribution, where µit is a function of observable explanatory variables and unknown

parameters, as defined below. It is assumed that the Vits and Uits are independent random

variables.

Different specifications of the external economy index, Er, in the production frontier

(1) are estimated. These are defined as follows:

Model A: Er = βRLlnRL + βRL2(lnRL)2,

where RL is regional industry size (measured by employment).

Model B: Er = βFSRlnFSR + βFSR2(lnFSR)2,

where FSR is farm density in the region (farms per square kilometer).

Model C: Er = βRLlnRL + βRL2(lnRL)2 + βFSRlnFSR + βFSR2(lnFSR)2,

to account for regional industry size and farm density, simultaneously. The rationale for these

external economy indexes RL and FSR are discussed later in this section.
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Next, we turn to the specification of the technical inefficiency model. The means of the

technical inefficiency effects, the Uits, the µits, are assumed to be a function of farm and

regional characteristics:

(2) µit = zitδδδδ

where zit is a vector of values of observable variables explaining the inefficiency; and δδδδ is a

vector of parameters to be estimated. A positive parameter value for a coefficient of the kth z-

variable, i.e., δk>0, implies that the mean technical inefficiency increases as the value of this z-

variable increases.

The technical inefficiency models are specified as follows:

(3a) zitδδδδ = δ0 + Σkδklnxkit + δLNAGElnAGE + δLNAGE2(lnAGE)2

+ δRLlnRL + δRL2(lnRL)2 + ΣrδrtDrt + Σrδrt2Drt2 (Model A)

(3b) zitδδδδ = δ0 + Σkδklnxkit + δLNAGElnAGE + δLNAGE2(lnAGE)2

+ δFSRlnFSR + δFSR2(lnFSR)2 + ΣrδrtDrt + Σrδrt2Drt2 (Model B)

(3c) zitδδδδ = δ0 + Σkδklnxkit + δLNAGElnAGE + δLNAGE2(lnAGE)2

+ δRLlnRL + δRL2(lnRL)2 + δFSRlnFSR + δFSR2(lnFSR)2

+ ΣrδrtDrt + Σrδrt2Drt2. (Model C)

The input levels, xk, are included to account for the relationships between scale of

operation and the level of technical inefficiency. Managerial ability, which is unobserved, is

expected to be positively correlated with the size of the farm, since larger farms can afford to

hire better-educated managers.

The variable, AGE, is included as a determinant of technical inefficiency in all model

specifications. A negative relationship is expected between technical inefficiency and the

logarithm of farm age, due to learning-by-doing. However, there may also be forces working

in the opposite direction with respect to farm age. If replacement of physical capital is costly, a

negative capital vintage effect, which is positively correlated with farm age, may be present.

Furthermore, early entrants tended to be located at more sheltered sites with lower

bioproductivity than farms that entered the industry later. According to studies of salmon

farms, the marine environment around a farm also tends to become more disease prone over

time, due to the accumulation of organic sediments below the cages, leading to oxygen loss



9

and increased risk of fish diseases.6 Since it may be difficult to obtain a government licence to

relocate at a new site with higher bioproductivity, and relocation of farms is costly, farm age

may be positively correlated with technical inefficiency. Finally, due to changes in the

recruitment process to the industry over time, it may also be the case that the early cohorts of

entrepreneurs were less competent than those entering at a later stage.7

The models assume that the technical inefficiency is a function of time, t, and allows

the rate of adjustment to vary across regions by interacting the time variable with the regional

dummy variables, Dr. Through the region-specific time variables, we try to capture technology

and knowledge-diffusion processes that lead to reductions in technical inefficiency

differentials across regions. By including both farm age and the time effect, we distinguish

between the effects of learning-by-own-doing and diffusion processes on the inefficiencies of

firms.

Total regional industry employment (RL) is included in models A and C. This variable

may capture external economies of scale or the availability of industry-specific capital. It can

be viewed as a proxy for human capital in the regional industry, but it is probably also

correlated with the physical capital of the regional industry.

Figure 1 plots industry employment for the eight coastal regions included in the study.

We see that employment exhibits similar cyclical movements over time across regions.

Furthermore, there are substantial differences in the industry size, with the region of Rogaland

at one extreme and Hordaland at the other extreme (employing on average 342 and 1151

thousand man-hours, respectively, during the data period).

To account for density-dependent external effects among farms, the number of farms

per square kilometer of sea area (FSR) in the region is included in models B and C. The

proximity of farms can influence productivity in several respects. High farm density should

enhance knowledge transmission. It should also lead to a more efficient use of industry capital

equipment, such as vessels for transportation of live fish, and fish-processing facilities. Hence,

investments by individual farms in capital equipment are expected to decline due to increased

opportunities for sharing. This implies that there are external economies of scale associated

6 These findings have been documented in a large number of scientific reports by Johannessen (with different co-
authors) during the 1985-1992 period. See Johannessen, P.J. et al. (1985-92), Studies of Recipient Capacity at
Fish Farm Sites (In Norwegian: "Resipientundersøkelser på oppdrettslokaliteter"), Report, Institute of Fisheries
and Marine Biology, University of Bergen.
7 The Norwegian government awarded licences to new farms, and, in the early stages, it tended to put less
emphasis on the qualifications of applicants and more on their regional affiliation.
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with an increase in the number of farms in a region. On the other hand, there may be

congestion externalities of a biological nature. Fish disease externalities among farms are

expected to increase with higher farm density, leading to lower technical efficiency (and

productivity).
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Figure 1: Regional Industry Size in Norwegian Coastal Regions Measured by

Employment

All inputs and the externality indexes were normalized by their respective sample

means prior to estimation.

The parameters of the model are estimated using the program, FRONTIER 4.1, written

by Coelli (1996), such that the variance parameters are defined by 2
Sσ = 2

Vσ +σ2 and γ=σ2/ 2
Sσ ,

originally recommended by Battese and Corra (1977). The log-likelihood function of this

model is presented in the appendix of the working paper, Battese and Coelli (1993). When the

variance associated with the inefficiency term, Uit, converges towards zero (i.e., σ2→0) then

the ratio parameter, γ, approaches zero. When the variance of the random error, Vit, (
2
Vσ )

decreases in size, relative to the variance associated with the Uits, the value of γ approaches

one.

We provide estimates of the elasticity of mean output with respect to explanatory

variables. It can be shown that the elasticity of mean output (see Battese and Broca, 1997) is
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Following Battese and Broca (1997), we refer to the term, ∂f(⋅)/∂xi (≡ Ei), as the frontier

elasticity, and the term, C⋅∂µ/∂xi(≡ Eµi), as the elasticity of technical efficiency.

4. Empirical Results

In the presentation of the empirical results, we first discuss the results for the frontier

production function and the technical inefficiency model separately, before we present overall

results from our estimated models.

The estimates for our stochastic frontier production functions are presented in Table 2.

The hypothesis that the average production function is an adequate representation of the data,

given the specifications of the stochastic frontier model of equations (1)-(2), is rejected for all

three models at the one per cent level of significance (see the likelihood-ratio test statistic at

the end of Table 2). For example, the likelihood-ratio (LR) statistic, for testing that the

inefficiency effects in Model A are not present, is equal to 439.60, which exceeds, 46.96, the

upper one per cent point for the Chi-square distribution with 27 degrees of freedom.8

4.1. The Frontier Production Function

The estimates for the frontier elasticities, evaluated at the sample mean levels of the variables,

are presented in Table 3. Later, in Table 6, we present the elasticities of mean output with

respect to the inputs, where the elasticity of the technical efficiency is added to the elasticity of

frontier output. These elasticity estimates are discussed later.

8 The correct critical values for testing the hypothesis that the parameter, γ, is equal to zero, should be obtained
from Table 1 of Kodde and Palm (1986). These values are less than the upper per cent points for the Chi-square
distribution. For Model A, the correct value is 39.53. However, if the LR statistic exceeds the Chi-square value,
then the null hypothesis that γ=0 should obviously be rejected.
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Table 2: Estimates for the Frontier Production Function Models

A B C
Coeff. St. Err. Coeff. St. Err. Coeff. St. Err.

β0 0.146 0.071 -0.175 0.040 0.240 0.077
βFeed 0.621 0.030 0.621 0.030 0.609 0.030
βInfish 0.334 0.021 0.334 0.020 0.345 0.020
βKapital 0.029 0.017 0.029 0.017 0.028 0.017
βLabor -0.042 0.029 -0.035 0.028 -0.030 0.028
βMater -0.023 0.017 -0.021 0.017 -0.018 0.018
βFF 0.1029 0.0082 0.1065 0.0082 0.1073 0.0082
βFI -0.030 0.014 -0.039 0.015 -0.040 0.015
βFK 0.040 0.012 0.039 0.012 0.039 0.012
βFL 0.033 0.022 0.036 0.022 0.033 0.022
βFM -0.062 0.011 -0.057 0.011 -0.060 0.011
βII 0.0696 0.0047 0.0671 0.0047 0.0711 0.0050
βIK -0.0239 0.0085 -0.0193 0.0086 -0.0222 0.0085
βIL -0.051 0.017 -0.052 0.016 -0.053 0.016
βIM -0.0243 0.0093 -0.0279 0.0092 -0.0271 0.0091
βKK 0.0074 0.0043 0.0074 0.0044 0.008 0.004
βKL -0.044 0.012 -0.040 0.012 -0.041 0.012
βKM 0.0013 0.0068 0.0003 0.0069 0.0012 0.0068
βLL 0.007 0.011 0.008 0.011 0.007 0.011
βLM 0.011 0.013 0.005 0.013 0.008 0.013
βMM 0.0138 0.0040 0.013 0.004 0.0143 0.0041
βFt -0.0205 0.0040 -0.0202 0.0040 -0.0189 0.0039
βIt -0.0087 0.0026 -0.0087 0.0025 -0.0098 0.0025
βKt -0.0009 0.0022 -0.0011 0.0022 -0.0008 0.0022
βLt 0.0083 0.0038 0.0072 0.0038 0.0062 0.0037
βMt 0.0113 0.0022 0.0109 0.0022 0.0110 0.0022
βt -0.026 0.027 0.084 0.021 -0.011 0.026
βt2 0.0049 0.0045 -0.0146 0.0033 0.0043 0.0045
βt3 0.000040.00023 0.0010 0.00016 0.000000.00023
βH -0.208 0.052 0.022 0.022 -0.287 0.057
βSF -0.061 0.029 0.040 0.024 -0.167 0.042
βMR -0.195 0.042 -0.009 0.021 -0.336 0.059
βST -0.140 0.032 -0.027 0.042 -0.337 0.066
βNT -0.073 0.023 -0.035 0.034 -0.210 0.044
βN -0.183 0.043 0.028 0.051 -0.469 0.096
βT&F -0.132 0.031 -0.005 0.059 -0.405 0.090
βRL 0.182 0.043 0.292 0.053
βRL2 -0.029 0.030 -0.005 0.031
βFSR -0.005 0.033 -0.154 0.041
βFSR2 -0.006 0.016 -0.028 0.016
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Table 2 (continued)

A B C
Coeff. St. Err. Coeff. St. Err. Coeff. St. Err.

δ0 -0.83 0.13 -1.26 0.25 -1.32 0.29
δFeed -0.266 0.034 -0.256 0.034 -0.263 0.036
δInfish -0.251 0.032 -0.210 0.032 -0.233 0.038
δKapital 0.005 0.024 -0.024 0.023 -0.022 0.023
δLabor -0.140 0.043 -0.153 0.040 -0.153 0.039
δMater 0.100 0.030 0.101 0.024 0.114 0.026
δLNAGE -0.0018 0.0041 0.0006 0.0041 -0.0017 0.0042
δLNAGE2 0.000480.00015 0.000450.00016 0.000540.00017
δRL -0.459 0.091 -0.056 0.083
δRL2 -0.40 0.10 -0.094 0.096
δFSR -0.76 0.14 -0.77 0.15
δFSR2 -0.175 0.045 -0.172 0.047
δR,t -0.104 0.039 0.158 0.056 0.196 0.061
δH,t 0.211 0.035 0.482 0.085 0.508 0.092
δSF,t 0.103 0.031 0.307 0.063 0.340 0.075
δMR,t 0.129 0.033 0.316 0.063 0.315 0.069
δST,t 0.134 0.028 0.196 0.042 0.175 0.046
δNT,t 0.056 0.031 0.233 0.052 0.191 0.052
δN,t 0.192 0.032 0.029 0.026 0.078 0.033
δT&F,t 0.131 0.028 0.063 0.028 0.046 0.028
δR,t2 0.0106 0.0035 -0.0057 0.0040 -0.0100 0.0044
δH,t2 -0.0191 0.0028 -0.0398 0.0068 -0.0422 0.0074
δSF,t2 -0.0117 0.0027 -0.0262 0.0055 -0.0308 0.0068
δMR,t2 -0.0128 0.0028 -0.0286 0.0056 -0.0274 0.0060
δST,t2 -0.0197 0.0024 -0.0233 0.0048 -0.0213 0.0054
δNT,t2 -0.0143 0.0034 -0.0292 0.0060 -0.0253 0.0061
δN,t2 -0.0199 0.0030 -0.0033 0.0022 -0.0088 0.0029
δT&F,t2 -0.0144 0.0026 -0.0087 0.0027 -0.0065 0.0026

σs2 0.109 0.010 0.106 0.012 0.113 0.015

γ 0.868 0.015 0.866 0.016 0.877 0.016

Log-L. 1002.60 1002.39 1022.68
LR* 439.60 451.16 459.47
* LR statistic to test for no one-sided error, U.
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In all three models, fish feed (F) turns out to be the most important input, as measured

by the frontier feed elasticity (EF) with values 0.45-0.46 across the models for the frontier

function (cf. Table 3). Fish stock (I) is the second most important input in terms of frontier

output elasticity, with values around 0.27. Labor (L), materials (M), and capital (K) are much

less important. The frontier output elasticity with respect to materials is about 13 per cent of

the feed elasticity. The frontier output elasticities with respect to capital and labor are about

five per cent of the feed elasticity. The returns-to-scale (RTS) parameter, which is the sum of

the input elasticities, is very similar across the three models, with a mean value around 0.83.

This implies that farms with inputs at the mean levels operate at a sufficiently large scale to

exhaust economies of scale.

Table 3: Frontier Elasticity Estimates*

Model A B C
Mean St. Err. Mean St. Err. Mean St. Err.

EFeed 0.455 0.014 0.455 0.015 0.452 0.015
EInfish 0.269 0.010 0.274 0.010 0.275 0.010
EKapital 0.0212 0.0088 0.0183 0.0091 0.0194 0.0089
ELabor 0.024 0.016 0.023 0.016 0.024 0.016
EMater 0.0585 0.0089 0.0596 0.0087 0.0621 0.0087
RTS 0.828 0.027 0.830 0.027 0.833 0.027
TC 0.0441 0.0038 0.0563 0.0032 0.0464 0.0035
ERL 0.187 0.041 0.293 0.051
EFSR -0.002 0.030 -0.139 0.038
* Elasticities are evaluated at the sample mean level of the regressors. Symbols: Ek = Elasticity of frontier output
with respect to input k (k = F, I, K, L, M); RTS = Returns To Scale; TC = rate of Technical Change; ERL =
Elasticity of frontier output with respect to regional industry employment; EFSR = Elasticity of frontier output
with respect to regional farm density.

Models A and C include regional industry size (RL) as a proxy for agglomeration

externalities, causing shifts in the regional production frontier. According to the parameter

estimates, with statistically significant first-order estimates, βRL, and insignificant second-

order estimates, βRL2, the production frontier increases with industry size, but at a decreasing

rate. The elasticity of frontier output with respect to regional employment (ERL) is 18.7 and

29.3 per cent in Models A and C, respectively (see Table 3). These estimates suggest that an

increase in regional industry size has a substantial impact on the regional production frontier.

The other index for agglomeration externalities, regional farm density (FSR), has no

statistically significant effect on frontier output in Model B, according to the standard errors of

the estimators for the parameters, βFSR and βFSR2. The frontier output elasticity with respect to

FSR is estimated to be very small in Model B, namely –0.2%. However, in Model C, the most



15

general model, regional farm density is significant in both statistical and economic terms. The

frontier elasticity with respect to FSR is estimated to be –13.9 per cent, meaning that the

frontier output is lower for farms that are closely located. Our interpretation of this result is

that biological congestion effects, mainly through fish diseases, dominate any positive

externalities from spatial proximity.

The rate of technical change (TC) of the production frontier exhibits some variation

across models; technical progress is estimated to be 4.4, 5.6 and 4.6 per cent using Models A,

B and C, respectively. The discrepancy in TC estimates seems to be due to different

specifications of regional agglomeration effects in the models.

The coefficients associated with the regional dummies suggest that there are

statistically significant differences in frontier output of a more permanent character, and that

these differences are fairly large. It is reasonable to attribute these differences to varying

biophysical conditions and services from regional public infrastructure capital. When

appropriate external economy indexes (e.g., regional industry size) are not included in the

model, then the regional dummies also capture external effects. In Table 2, the ranking of

regions in terms of productivity values in Model A, where only regional industry size is

included as an agglomeration index, is different from that for Models B and C, where regional

farm density is included.

4.2. The Technical Inefficiency Model

We now examine the results from the estimated technical inefficiency models (second part of

Table 2). We see from the estimated input parameters (δF, δI, δK, δL, δM) that the input use has a

significant effect on mean technical inefficiency. For feed, fish input and labor, the

coefficients are negative in all models, implying that efficiency increases as the quantity

employed of these inputs increase. On the other hand, technical efficiency decreases as

materials inputs increase. For the capital input the results are ambiguous across models, with

models B and C indicating that technical efficiency increases with increasing capital.

However, the estimates associated with capital are not significant for any of the three models.

Table 4 provides the estimates of the elasticity of technical efficiency with respect to the inputs

(Eµk). A positive estimate means that the level of technical efficiency is increased as the value

of the associated variable increases. According to Table 4, the inputs have fairly small

marginal effects. The effect of increasing the use of all inputs by the same magnitude is
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measured by the elasticity TEIµ = ΣEµk in Table 4. Depending on the model, a one per cent

increase in all inputs leads to an increase in technical efficiency between 6.2 and 6.5 per cent.

Table 4: Estimates for Elasticities of Technical Efficiency*

Model A B C
Mean St. Err. Mean St. Err. Mean St. Err.

EµFeed 0.0303 0.0039 0.0307 0.0041 0.0292 0.0040
EµInfish 0.0286 0.0037 0.0251 0.0038 0.0258 0.0042
EµKapital -0.0006 0.0027 0.0029 0.0028 0.0024 0.0025
EµLabor 0.0160 0.0049 0.0183 0.0048 0.0170 0.0044
EµMater -0.0114 0.0034 -0.0121 0.0029 -0.0127 0.0028
TEIµ 0.0629 0.0084 0.0649 0.0084 0.0617 0.0082
EµAGE -0.00083 0.00022 -0.00111 0.00025 -0.00095 0.00024
TECµ 0.00541 0.00091 0.0035 0.0010 0.0037 0.0010
EµRL 0.0447 0.0091 0.0045 0.0082
EµFSR 0.080 0.014 0.075 0.014
* This table provides elasticity estimates for technical efficiency, evaluated at the sample means of the
regressors. The elasticities are defined as follows: Eµk = Elasticity of technical efficiency with respect to input k
(k = F, I, K, L, M); TEIµ = ΣEµk = Total input elasticity of technical efficiency; TECµ = rate of change in technical
efficiency (i.e. catch-up over time); EµAGE = Elasticity of technical efficiency with respect to age; EµRL = Elasticity
of technical efficiency with respect to regional industry employment; EµFSR = Elasticity of technical efficiency
with respect to regional farm density.

The effect of farm age on technical efficiency is of interest. Although the second-order

coefficient of farm age, δLNAGE2, is statistically significant, only very small values are estimated

for the elasticity of technical efficiency with respect to farm age, being -0.1 per cent. for all

models (see Table 4). This means that learning-by-doing contributes little to the catch-up of

inefficient firms, or that learning-by-doing is counteracted by a farm site deterioration effect.9

Next, we investigate the change in technical efficiency over time, or the rate of catch-

up of inefficient firms. Region-specific rates of catch-up are accounted for in the models.10 A

homogeneous rate of catch-up across regions (i.e., δr,t = δt and δr,t2 = δt for all r) was rejected

for all three models using a likelihood-ratio test, the test statistics being 23.98, 44.24 and 35.14

(exceeding the five per cent critical value, 23.68, for the Chi-square distribution with 14 df)

9 Farms were located at sites that tended to become biologically exhausted over time due to the accumulation of
organic sediments.
10 In all regions, the region-specific estimated rate of change in technical efficiency (not reported here) is negative
or zero, implying a reduction in the level of technical efficiency, except in the southernmost region, Rogaland.
This is in line with a priori expectations, since Rogaland was considered to be the technically most efficient
region in the beginning of the data period.
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for Models A, B and C, respectively.11 Although estimates for the catch-up parameters, δr,t and

δr,t2, are statistically significant, the sizes of the estimates for the elasticity of technical

efficiency with respect to time, TECµ , ranged from 0.3 per cent (for Model B) to 0.5 per cent

(for Model A), indicating that differences in technical efficiencies over time are relatively

small.

Table 5: Likelihood-Ratio Tests of Selected Null Hypotheses for Parameters of the

Stochastic Frontier Production Models

Model Null hypothesis (H0) LR statistic Df Critical
value*

Decision

A δr,t = δr,t2 = 0, all r 30.42 16 26.30 Reject H0

B δr,t = δr,t2 = 0, all r 54.08 16 26.30 Reject H0

A δr,t = δt, δr,t2 = δt2, all r 23.98 14 23.68 Reject H0

B δr,t = δt, δr,t2 = δt2, all r 44.24 14 23.68 Reject H0

C δr,t = δt, δr,t2 = δt2, all r 35.14 14 23.68 Reject H0

A βRL = βRL2 = δRL = δRL2 = 0 43.74 4 9.49 Reject H0

B βFSR = βFSR2 = δFSR = δFSR2 = 0 43.32 4 9.49 Reject H0

A vs C βFSR = βFSR2 = δFSR = δFSR2 = 0 40.16 4 9.49 Reject H0

B vs C βRL = βRL2 = δRL = δRL2 = 0 40.58 4 9.49 Reject H0

C βRL = βRL2 = δRL = δRL2 =
βFSR = βFSR2 = δFSR = δFSR2 = 0

83.90 8 15.51 Reject H0

* The tests are conducted using a five per cent level of significance.

The relationship between technical efficiency and the agglomeration externalities

indexes is now considered. The second-order coefficients, δRL2 and δFSR2, are estimated to be

negative across Models A, B and C, indicating that maximum values of the quadratic functions

are involved. These coefficients are highly statistically significant, except for the estimate for

regional industry size (RL) in Model C. The elasticity of technical efficiency with respect to

regional industry size (EµRL) is estimated to be 4.5 and 0.4 per cent for Models A and C,

respectively (see Table 4). Furthermore, the elasticity of technical efficiency with respect to

regional farm density is estimated to be 8.0 and 7.5 per cent for Models B and C, respectively.

Hence, the models suggest that an increase in industry size and farm density lead to an

increase in technical efficiency. For farm density, our results suggest that negative biological

congestion externalities are captured by the production frontier function, while positive

11 The appropriateness of including time in the technical inefficiency functions was supported by LR tests of
H0: δr,t = 0 and δr,t2 = 0, for all r, which provided test statistics of 30.42 for Model A and 54.08 for Model B

(exceeding the critical value, 26.30, for the 2
16χ distribution).
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externalities (e.g., due to sharing of specialized input and knowledge spillovers) are captured

by the technical inefficiency model.

4.3. Overall Results

We have estimated three competing models to test for the influence of agglomeration effects.

In Table 5, we present several likelihood-ratio tests associated with these models. It turns out

that Model A and Model B are rejected, given the specifications of the more general Model C.

We therefore put most emphasis on the results from Model C.

Table 6: Estimates of Elasticities of Mean Salmon Output With Respect to Inputs*

Model A B C
Mean St. Err. Mean St. Err. Mean St. Err.

ENFeed 0.485 0.015 0.486 0.016 0.482 0.015
ENInfish 0.298 0.010 0.299 0.011 0.301 0.011
ENKapital 0.0206 0.0092 0.0211 0.0095 0.0219 0.0093
ENLabor 0.040 0.017 0.042 0.017 0.041 0.016
ENMater 0.047 0.010 0.0474 0.0092 0.0494 0.0092
RTSN 0.891 0.028 0.895 0.029 0.895 0.028
TCN 0.0495 0.0039 0.0598 0.0033 0.0501 0.0037
ENRL 0.231 0.042 0.298 0.052
ENFSR 0.078 0.034 -0.064 0.041
* This table provides non-neutral elasticity estimates, as proposed by Battese and Broca (1997), evaluated at the
sample mean level of the variables. The elasticities are defined as follows (cf Table 3 and 4):
ENk = Ek + Eµk, k = F, I, K, L, M; RTSN = RTS + TEIµ; TCN = TC + TECµ; ENRL = ERL + EµRL;
ENFSR = EFSR + EµFSR.

In Table 6, we present the estimates for the elasticity of mean output with respect to the

inputs obtained using Models A, B and C.12 These elasticities involve both the elasticity of

frontier output and the elasticity of technical efficiency, where the latter term is non-zero for a

non-neutral stochastic frontier model, which has input variables in the model for the

inefficiency effects. The elasticities in Tables 3 and 4 are added, for the corresponding inputs,

to obtain the elasticity of mean output with respect to the given input. Note that the estimated

returns to scale (RTSN) is larger for all models.

According to Model C, the total effect of an increase in regional farm density on mean

output is negative, with an elasticity of –6.4 per cent. This result suggests that negative

biological congestion externalities more than outweigh positive externalities from higher farm

12 Other studies that have estimated elasticities for non-neutral frontier models are Huang and Liu (1994), Coelli
and Battese (1996), Battese and Broca (1997), and Lundvall and Battese (2000).
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density. On the other hand, all models with RL included provide support for positive

externalities associated with increasing industry size. In the preferred model, Model C, the

elasticity of output with respect to regional industry size is as high as 29.8 per cent. Inclusion

of the agglomeration indexes is strongly supported by likelihood-ratio tests for all three

models.13
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Figure 2. The Elasticity of Output with Respect to Regional Industry Size

It could be useful to investigate the estimated agglomeration economies in salmon aquaculture

as expressed by our elasticity measures, not only around the sample mean values, but also for

a range of regional industry sizes and farm densities. Figure 2 plots the elasticity of salmon

output with respect to regional industry size using the estimates from model C, where ERL is

the elasticity with respect to frontier output, EMURL is the elasticity with respect to technical

efficiency and ENRL is the elasticity with respect to mean output. According to figure 2 the

elasticity of mean output ENRL is positive, increasing and concave in regional industry size,

ranging from 0.28 to 0.31. In other words, there are positive agglomeration externalities across

all relevant regional industry sizes, but the positive effects are larger for regions with a larger

industry.

13 The LR statistics associated with the null hypothesis, that all parameters involving the regional agglomeration
indexes are zero, are 43.74 and 43.32 for Models A and B, which exceed the five per cent critical value, 9.49, for

the 2
4χ distribution). For Model C, the LR statistic is 83.90, which is greater than the critical value, 15.51, for the

2
8χ distribution.
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Figure 3. The Elasticity of Output with Respect to Regional Farm Density

Figure 3 plots the elasticity of salmon output with respect to regional farm density using the

estimates from model C, where EFSR is the elasticity with respect to frontier output, EMUFSR is

the elasticity with respect to technical efficiency and ENFSR is the elasticity with respect to

mean output. According to figure 3 the elasticity of mean output ENFSR is negative, decreasing

and convex in regional farm density, ranging from -0.03 to -0.09. This means that there are

negative externalities to firms’ productivity regardless of farm density, but the negative effect

is stronger for higher farm densities.

5. Conclusions

In this report, we examine the influence of regional agglomeration externalities on the

productivity and efficiency of salmon farming in Norway. Our results support the presence of

such externalities.

We estimate stochastic frontier production models on a large panel of salmon farms.

These models allow us to distinguish the effects of different factors, such as inputs and

external effects, on the production frontier and technical efficiency. We also control for

unobservable region-specific effects, farm age and technical change in our models.

Internal returns to scale and agglomeration externalities are the main factors explaining

differences in productive performance. Technical change is also an explanatory factor behind
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discrepancies when we compare productivity across time. Learning-by-doing, as measured by

farm age, seems to be a less important factor.

Two external economy indexes are used in the models, namely regional industry size

and regional farm density. In the most general specification, we use these indexes in both the

frontier production function and the technical inefficiency model, because we hypothesize the

agglomeration externalities influence both productivity and inefficiency of salmon farming.

We found that an increase in regional industry size is associated with increases in both frontier

output and the level of technical efficiency for farms in that region. An increase in regional

farm density has a negative effect on frontier output, but is associated with a positive effect on

the level of technical efficiency. Overall, the effect of increasing regional farm density on

output is negative, implying that negative congestion externalities associated with fish diseases

dominate positive externalities associated with knowledge spillovers and sharing of

specialized inputs.

It should be noted that our results do not allow us to identify the sources or

mechanisms that generate external economies. A more detailed case study of selected regions

or farms could be a useful means to uncover the mechanisms that are at work.14

The Norwegian government has influenced the regional distribution of salmon farms

through its regulations. This report shows that regional location of farms may influence the

industry’s marginal cost curve. There exists a potential for spatial redistribution of farms that

can lead to a downward shift in the industry’s supply curve. Based on the findings here, one

should take into account density-dependent effects of relocation and effects on regional

external economies of scale. According to our results, shifting productive resources between

two regions affects the productivity in both regions, but in opposite directions. Although

government regulation may have lead to an average productivity that is lower than the

potential, deregulation may not necessarily lead to an efficient spatial distribution of

production. With a large number of independent farms, external economies of scale and

disease externalities are not fully internalized by private decision makers, leading to inefficient

outcomes. Hence, there is a role for government to account for these externalities.

This report provides new evidence on the effects of learning and industry infrastructure

on productivity in Norwegian salmon farming. Future analyses should try to decompose and

measure the effects of biophysical differences, farm-specific factors and regional industry

infrastructure on productivity differentials. Furthermore, models should be specified to allow

14 The inability to precisely identify the underlying sources of agglomeration externalities is a common feature of
empirical literature, cf. Bartelsman et al. (1994).
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testing whether individual farms have different abilities to capture positive externalities from

the regional industry.

Acknowledgement

Financial support from the Norwegian Research Council under project no. 133874/110 is

gratefully acknowledged.



23

References

Bartelsman, E.J., Caballero, R.J., and Lyons, R.K. (1994), "Customer- and Supplier-Driven

Externalities", American Economic Review, 84(4), 1078-1084.

Basu, S., and Fernald, J.G. (1997), "Returns to Scale in U.S. Production: Estimates and

Implications", Journal of Political Economy, 105(2), 249-283.

Battese, G.E., and Coelli, T.J. (1993), "A Stochastic Frontier Production Function

Incorporating a Model for Technical Inefficiency Effects", Working Papers in

Econometrics and Applied Statistics, No. 69, Department of Econometrics, University of

New England, 22 pp.

Battese, G. E., and S. S. Broca (1997), "Functional Forms of Stochastic Frontier Production

Functions and Models for Technical Inefficiency Effects: A Comparative Study for Wheat

Farmers in Pakistan", Journal of Productivity Analysis, 8, 395-414.

Batttese, G.E., and Coelli, T.J. (1995), "A Model for Technical Inefficiency Effects in a

Stochastic Frontier Production Function for Panel Data", Empirical Economics, 20, 325-

332.

Battese, G.E., and Corra, G.S. (1977), "Estimation of a Production Frontier Model: With

Application to the Pastoral Zone of Eastern Australia", Australian Journal of Agricultural

Economics, 21(3), 169-179.

Burnside, C. (1996), "Production Function Regressions, Returns to Scale, and Externalities",

Journal of Monetary Economics, 37(2), 177-201.

Caballero, R.J., and Lyons, R.K. (1990),"Internal Versus External Economies in European

Industry", European Economic Review, 34, 805-830.

Caballero, R.J., and Lyons, R.K. (1992),"External Effects in United States Procyclical

Productivity", Journal of Monetary Economics, 29, 209-225.

Ciccone, A., and Hall, R.E. (1996), "Productivity and the Density of Economic Activity."

American Economic Review, 86(1), 54-70.

Coelli, T.J. (1996), "A Guide to FRONTIER Version 4.1: A Computer Program for Stochastic

Frontier Production and Cost Function Estimation", CEPA Working Papers, No. 7/96,

ISBN 1 86389 4950, Department of Econometrics, University of New England, Armidale,

pp. 33.

Coelli, T.J., and Battese, G.E. (1996), "Identification of Factors which Influence the Technical

Inefficiency of Indian Farmers", Australian Journal of Agricultural Economics, 40, 103-

128.



24

Dietrichs, E. (1995), "Adopting a 'High-Tech' Policy in a 'Low-Tech' Industry: The Case of

Aquaculture", (Report No. 2). STEP Group, Oslo.

Eberts, R.W., and McMillen, D.P. (1999), "Agglomeration Economies and Urban Public

Infrastructure", In E.S. Mills and P. Cheshire (Eds.), Handbook of Regional and Urban

Economics (pp. 1455-1495), Elsevier Science B.V.

Huang, C.J., and Liu, J.T. (1994), "Estimation of a Non-Neutral Stochastic Frontier

Production Function", Journal of Productivity Analysis, 5, 171-180.

Lundvall, K., and Battese, G.E. (2000), "Firm Size, Age and Efficiency: Evidence from

Kenyan Manufacturing Firms", Journal of Development Studies, 36 (No.3), 146-163.

Paul, C.J.M., and Siegel, D.S. (1999), "Scale Economies and Industry Agglomeration

Externalities: A Dynamic Cost Function Approach", American Economic Review, 89(1),

272-290.


