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1 Introduction

It is well known that ordinary least squares (OLS) is inconsistent and biased if one or more
explanatory variables are measured with error. It is also well known that instrumental
variables (IV) can be used to deal with the problem. Graduate text books in econometrics
typically present the classical errors-in-variables model where one explanatory variable
is measured with error and the measurement error is uncorrelated with all explanatory
variables in the model as well as with the unobserved disturbance. A second measurement
of the mismeasured variable is introduced, and it is assumed that the measurement error
in the second measure is uncorrelated with the measurement error in the first as well
as with all other variables including the disturbance. The second measure is then a
valid instrument for the first. Papers that have made important contributions using this
technique include Ashenfelter and Krueger (1994), Borjas (1995), Barron et al. (1997)
and Krueger and Lindahl (2001).!

The favourite text book example of instrumental variables used to solve a measurement
error problem in economics is the analysis of returns to education by Ashenfelter and
Krueger (1994). Ashenfelter and Krueger simultaneously account for ability bias and
measurement, errors by using a sample of twins. Identical twins are similar with respect
to family background and genetic endowment, but measurement errors in education are
exacerbated when ability is differenced out. The ingenuity of the Ashenfelter and Krueger
study is that they obtain two measures of education by asking each twin both about his
or her own education and about the education of the sibling.

The classical errors-in-variables model with two indicators constitutes a three-equation
system and can be estimated with full information maximum likelihood using the latent
variable framework of Goldberger (1972) and Joreskog (1978).2 In the applied economet-
rics literature, however, IV seems to be the preferred approach when two measures are
available. In fact, the only papers we have found in economics journals that present a full

information maximum likelihood estimate are Ashenfelter and Krueger (1994) and the

'We briefly review some papers that instrument one mismeasured variable with another in Appendix

A.
2This estimation approach is usually implemented by using the software packages LISREL, see e.g.

Joreskog et al. (2001).
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follow up study by Rouse (1999).3

When two indicators are available and allow for an IV-solution, it is not obvious which
measure should be used as explanatory variable, and which measure should be used as
instrument. Whichever is chosen, a second estimate can be produced by reversing the role
of the variable and the instrument. Several studies present both estimates, but no discus-
sion of the choice between them appears to be available in the econometrics literature. In
a comprehensive chapter on measurement errors in the Handbook of Econometrics, Bound
et al. (2001) note that the availability of two estimates gives “some capacity to test the
underlying assumptions of the model”. Otherwise, the issue is left untouched.

The preference for IV among applied econometricians is probably explained by the
fact that this method is intuitive and computationally easy to implement. IV estimates
often have low precision, however. In the present paper we explore a simple improvement
of the classical IV solution. The proposed estimator is a linear combination of the two
IV estimates that is obtained by using a pair of indicators both ways. The improved esti-
mate is based solely on the two original estimates and by-products obtained when these
are calculated. It is optimal in the sense that it minimizes the variance among linear
combinations of the two IV estimators, and without co-variates it is a special case of the
Chamberlain (1982) II-matrix approach.? In a Monte Carlo study we show that the gain
in precision is significant compared to using only one of the two original IV estimates.
Both the asymptotic and the small sample efficiency are in the range of 70-85 percent.
Moreover, the proposed estimator compares very well with full information maximum
likelihood under normality. This holds even for small sample sizes, and, unlike maximum
likelihood, it does not require any numerical optimization nor any distributional assump-
tion. Somewhat counter-intuitively, our analysis reveals that those who present only a
single ordinary IV estimate should use the indicator suspected to be most contaminated

by measurement errors as variable and the other as instrument.

3Given that Ashenfelter and Krueger (1994) is the leading text book example of IV as a solution to
measurement errors bias, this is somewhat ironical. We have not found any graduate text book that

mentions the full information approach.
4See Chamberlain (1982, p.24). Ashenfelter and Krueger (1992) and Behrman and Rosenzweig (1999)

apply Chamberlain (1982) as an alternative to IV in a setting with classical measurement error and two
indicators. Ashenfelter and Krueger use the simple regression framework while Behrman and Rosenzweig

include control variables. Ashenfelter and Krueger (1992) is a preprint of their famous 1994-paper.
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Section 2 reviews the classical errors-in-variables model and Section 3 presents the
improved IV estimator. Section 4 contains the Monte Carlo study exploring the small

sample properties of the various estimators and Section 5 concludes.

2 The model

The problem at hand is a linear regression where one of the explanatory variables is
measured twice, both times with measurement errors. We consider the case of classical
errors-in-variables, i.e. we assume that the measurement errors are independent of each
other and of the underlying variable it is supposed to measure. Our main interest is to

estimate the parameter 5 in the model

yi = x; 0+ wiy + ¢ (1)

w is a k-dimensional exogenous variable, i.e. all elements have the property Cov(w;;,e;) =
0forali=1,..,nand j = 1,.., k. Furthermore, Cov(e;,e;) = o for i = j and zero
otherwise.

The explanatory variable x* is observed with measurement error through the variables
x1 and x5 given by

1 =T, + 01 (2)

and

Lo = T + Oy (3)
where §; and §, are independent measurement errors with variances 72 and 72. Cov(0y;, ;) =
0 for k=1,2.

Regressing y on e.g. x; using OLS is problematic since z is correlated with the error

term. This can be seen by considering the regression equation

where £1; = €; — 31;. The correlation between ¢ and z; is —(377 created by the common
term d; in the equations (2) and (4). An analogous result is true when using z, as the

regressor with the corresponding error term e9; = €; — (309;.
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3 An improved IV estimator

There are two possible instrumental variable estimators. o is correlated with xq, but
uncorrelated with ;. This means that z, is a valid instrument when z; is used as
regressor. ° Likewise, x; is uncorrelated with €5 and is a valid instrument when o is
used as regressor. For the sake of exposition we first show how to form the estimator,
BL 1v, where x7 is used as an instrumental variable for z5. For this purpose we form the
n X (k + 1)-quantities X; = [xo, W] and Z; = [y, W] where x;, ¢ = 1,2 are n x 1-
vectors containing the explanatory variables and the instrumental variable, respectively.
Furthermore, the n x 1-vector y containing the observations of the dependent variable,

the corresponding vector of error-terms e; and 7 = [3,4]" enables us to rewrite (4) as
y=Xim+e (5)

The IV estimator of 7 can now be written:

-1
xhry xW x!
Ao = 21 2 1Y (6)
W'axy WW W'y

The matrix inversion can be beneficially accommodated by use of the particular partition

of the matrix used in (6). This enables us to obtain a direct expression for the IV estimator

of 3, [31, 1v, which will be useful in what follows. The expression for Bl, v is
Bl,IV = Ky (7)

where

K, = (2o — 2, W(W'W) "W ay) () — 2, W (W'W) W) (8)
Similarly, when x5 is used as an instrumental variable for x; we obtain

BQ,IV = Kby (9)

where

°Note that both z; and x5 are endogenous variables in our model, only the latent z} is truly exogenous.
Nevertheless, the orthogonality conditions for valid instruments are satisfied. Thus, as pointed out by
Bigrn (2009) p. 348, endogenous variables can be useful as instruments in models with measurement

€rrors.
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Ky = (ghxy, — 2y W(W' W) "W a) Nz — bW (W'W) W) (10)

Our aim in this section is to find the linear combination of these two estimators which
has the smallest variance.® Since the estimators are consistent and thereby asymptotically
unbiased, for large samples, this can also be seen as finding the linear combination which
minimizes the asymptotic mean square error.

The asymptotic variances of the IV estimators Bk: v, k=1,2 are
v = Var(ﬁAl,W) =0l K\ K] (11)
and
vy = Var(Ba,v) = 03K, K (12)

respectively.” The variances o? and o2 are the error term variances in each of the regres-
sions.

Finally, the asymptotic covariance between Bl, v and BAQ, 1v, is given by
Ci2 = COU(Bl,IVaBZH/) = 012K1K§ (13>

where 015 is the covariance between the error terms in the two regressions. The quantities

0%, 02 and 015 can be estimated by the corresponding sample moments of the residuals

from the two IV regressions through
1
o7 =—Y &° (14)

. 1 .
62 = 52522, (15)
and

019 = — 5 £ 16
012 o €1&2 ( )

SNote that our approach cannot be generalized to a situation where z; is a proxy of the type z; =
ax* + §1. The second IV estimator is then needed to solve for a. See Lubotsky and Wittenberg (2006)
for a recent discussion and extension of this model. Our approach can, however, be generalized to a
case where one indicator is systematically smaller than the other if the difference can be modelled in the
form of an intercept in one of the measurement equations. Such an intercept can be transferred to the

y-equation and included in W.
"These variances are just sample versions of the asymptotic variance of IV estimators (e.g. Mardia

et al., 1994, p. 188).
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where €7 and €5 are the residuals from the two IV regressions. Our new estimator is
Barv = ABurv + (1= N (17)
and has variance
Var(Barw) = A+ (1= A0y + 2X0(1 — Nep (18)

Minimizing this with respect to A gives us an estimator which is optimal in the sense
that it is the linear combination of the two IV estimators which has the smallest variance.

The optimal A is given by

Vg — C12

v1 + V2 — 2c12

(19)

>\opt =

4 Small sample properties

We have performed various simulation studies in order to investigate the performance of
the estimator (3., rv. In section 4.1 we use a simple regression framework and vary the
ratio between the variances of the measurement errors of the two indicators. In section
4.2 we include a correctly measured covariate w and vary the correlation between this

covariate and the latent variable z*.

4.1 Simple regression

We start out exploring the small sample properties of the proposed estimator using a
simple regression model without intercept. The simulated data generating process (DGP)
is

y=0.5x"+¢

T =12+ 01 (20)

Ty = ¥ + 09
where Var(z*) =1, 02 = Var(e) = 0.5, 72 = Var(d;) = 0.25 and 75 = Var(d,) is varied
in between 0.25 and 1. In addition, €, ; and 5 are assumed to be independent and
normally distributed. The results are given in table 1 and table 2 and show significant

improvement compared to using one single IV estimator. Furthermore, for all of the
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investigated sample sizes, the cases studied indicate that the MSE of the improved IV

estimator is very close to the full information maximum likelihood estimator.

n OLS V1 V2 ML SIMP non-conv

100 14.766 7.418 7.510 6.444 6.459 11
1000 10.455 0.735 0.710 0.631 0.631 21
5000 10.064 0.144 0.138 0.121 0.121 16

Table 1: MSE of estimators when the true value of 8 = 0.5, 02 =
0.5, 77 = 0.25 and 72 = 0.25. 1000 simulation replicates. The last
column shows the number of replicates where the ML-estimator did not
converge. Those replicates were removed for all estimators. The number

of observations is given by n, and SIMP is our improved IV estimator.

n OLS IV1 IV2 ML SIMP non-conv

100 14.427 10.621 11.662 8.659 8.549 9
1000 10.389  0.923 1.133 0.788 0.785 0
5000 10.057  0.208 0.231 0.172 0.172 0

Table 2: MSE of estimators when the true value of 8 = 0.5. ¢2 = 0.5,
2 = 0.25, 72 = 1. 1000 simulation replicates. The last column shows the
number of replicates where the ML-estimator did not converge. Those
replicates were removed for all estimators. The number of observations

is given by n, and SIMP is our improved IV estimator.

It is also interesting to know which of the two original IV estimators that dominates
the other, and how this depends on the two measurement errors. This is investigated by
means of figure 1 where A, is plotted against the ratio of the two measurement errors

for the parameter values in the simulation study. For the simple DGP studied above, A\,
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can be written as a function of this ratio

B+ (0% + BP7i)k

T B 1o+ (0 + P+ 28k (21)

Aopt = f(”)

where we use the notation x = 75 /7% and have assumed that Var(z*) = 1. Furthermore,
in order to avoid dependence on data we have substituted the K-matrices, which contain
data, with population moments, e.g. we have used Var(z;) = 1+ 72. Figure 1 shows a

plot of this function for the parameter values used in the simulation study above.

Figure 1: The optimal weight A,y for different choices of &, the ratio

of the measurement errors of the two indicators.

At least two interesting observations can be made from this graph. First, if only a
standard IV estimator is used and the econometrician has an opinion regarding which
of the measurements is least prone to measurement errors, the measurement thought to
have the smallest errors should be used as the instrumental variable. This can be seen
by observing the fact that for values of k larger than one, (relatively small measurement
error in z1) the optimal )\, is large, implying a large weight on the IV estimator where x4
is the instrumental variable. Secondly, even for cases where the measurement error in one
variable is huge relative to the other, a gain is to be made from weighting them together.
This is seen by the asymptote of the function. Even for x = 100, i.e. when one z-variable
has a measurement error variance that is 100 times larger than the measurement error
variance of the other, a significant weight should be given to both estimators. However,

it should be noted that we do not consider other alternatives than the IV estimators. If
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the ratio is large simply because one of the variables is measured almost without error,
OLS would be better than any of the two IV estimators. If the ratio is large because one
of the indicators is extremely noisy, OLS may also be preferable. In this case, however, a
trade-off between bias and precision has to be made.®

We can also see that when x = 1, then A,y = % which means that if the measurement
error is of the same magnitude for both measurements and one insists on using just
one instrumental variable estimator, then the choice of estimator is irrelevant. However,
an improved estimate can be obtained by weighting the two together, and the optimal
estimator is simply the average of the two original IV estimates in this case.

Figure 2 shows how the variance of the improved estimator relates to the variance of
that of the ordinary I'V estimators with the smallest variance. The improvement increases

with the ratio of the measurement errors of the two indicators.

8 An early and interesting contribution to the measurement error literature by Feldstein (1974) discusses
this trade-off and suggests and evaluates alternative procedures for “balancing the loss of efficiency in IV
estimation against the potential gain of reduced bias”. He proposes a so-called WAIV estimator which is
a weighted average of the OLS and IV estimates. Feldstein finds that the WAIV estimator is consistent
and has a “smaller MSE than the IV estimator in a wide class of conditions and otherwise has an equal

MSE”.

10
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Figure 2: The efficiency of the improved IV estimator relative to the
best single IV estimator for different choices of k, the ratio of the mea-

surement errors of the two indicators.

4.2 Adding a covariate without measurement error

Our proposed estimator allows for an arbitrary number of correctly measured covariates
in addition to the mismeasured variable of main interest. Most relationships in applied
work contain such covariates. In this section we explore whether the main results from the
simulation study above are robust to including a covariate. The DGP that we simulate

from is

y = 0.52" +0.5w + ¢

Ty ="+ (22)

Ty = ¥ + 09
where Var(z*) = 1, Var(w) = 1, 0 = Var(e) = 0.5, 7¥ = Var(é;) = 0.25 and 73 =
Var(dy) = 0.25. The covariance between x* and the extra regressor w, o,+,, is varied
between —0.5, 0 and 0.5. As before, €, ; and J, are assumed to be independent and
normally distributed.

None of the tables 3, 4 or 5 reveal any fundamental difference from the results in the

11
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previous section. For the parameter values studied, the improved IV estimator performs
better than both the original IV estimators and it is not significantly outperformed by
the ML estimator.

n OLS IVl V2 ML SIMP nonconv

100 21.085 10.847 10.258 9.067 8.931 19
500 16.363 2.034 1.921 1.663 1.654 1
1000 16.191 1.003 1.086 0.877 0.881 1

Table 3: MSE of estimators when the true value of 3 = 0.5, v = 0.5,
Opiw = —0.5, 02 = 0.5, 72 = 0.25 and 72 = 0.25. 1000 simulation
replicates. The last column shows the number of replicates where the
ML-estimator did not converge. Those replicates were removed for all
estimators. The number of observations is given by n, and SIMP is our

improved IV estimator.

n OLS IVl V2 ML SIMP nonconv

100 14.850 7.968 7.697 6.976 6.939 5
500 11.052 1.321 1.380 1.152 1.155 2
1000 10.382 0.699 0.739 0.627 0.624 3

Table 4: MSE of estimators when the true value of 8 = 0.5, v = 0.5,
Oprw = 0,02 = 0.5, 72 = 0.25 and 75 = 0.25. 1000 simulation replicates.
The last column shows the number of replicates where the ML-estimator
did not converge. Those replicates were removed for all estimators. The
number of observations is given by n, and SIMP is our improved IV

estimator.

12
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n OLS V1 V2 ML SIMP nonconv

100 20.796 10.427 10.330 8.912 8.709 4
500 16.697 1971 2.016 1.669 1.666 7
1000 16.166  1.023  1.068 0.892 0.891 18

Table 5: MSE of estimators when the true value of § = 0.5, v = 0.5,
oprw = 0.5, 02 = 0.5, 72 = 0.25 and 77 = 0.25. 1000 simulation
replicates. The last column shows the number of replicates where the
ML-estimator did not converge. Those replicates were removed for all
estimators. The number of observations is given by n, and SIMP is our

improved IV estimator.

5 Conclusion

An easy-to-implement improvement of the IV estimator of the classical error-in-variables
model has been proposed and investigated with a Monte Carlo study. In terms of MSE;,
the estimator significantly outperforms the standard IV estimator, and, more surprisingly,
performs well compared to a full (Gaussian) maximum likelihood estimator even under

normally distributed errors.

13
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Appendix A: Examples of papers that have two indi-
cators and use IV to correct for measurement error
bias

While severe measurement error is often a problem in economic data, it is not often the
case that two measures of an error ridden variable is available to correct the bias. With
an increasing availability of micro data, this is likely to change, however. Researchers
who are able to find a second measure of an important, mismeasured variable, often make
important contributions. Below are some papers that succeeded Ashenfelter and Krueger

(1994) which we discussed in the introduction.

e Borjas (1995) in the American Economic Review shows that residential segregation
gives rise to ethnic externalities in the human capital accumulation of the young
generation. Parental skills are imprecisely measured, but a large number of siblings
in the data makes it possible to instrument each individual’s own report with the

average of the siblings’ report in the intergenerational transmission equation.

e Barron et al. (1997) in the Journal of Labor Economics use a survey where both
employers and their employees have provided an estimate of on-the-job training.
Their analysis suggests that previous estimates of the effect of training on wages

and productivity growth have been underestimated by a factor of nearly three.

e Ashenfelter and Rouse (1998) in the Quarterly Journal of Economics study the
correlation between ability and schooling and the extent to which the return to
schooling varies with ability level. They use data for identical twins and use one
twin’s report of both twin 1 and twin 2’s education as an instrument for the other
twin’s report of the same measures. They find that more able individuals attain
more schooling because they face lower marginal costs of schooling, not because of

higher marginal benefits.

e Krueger and Lindahl (2001) in the Journal of Economic Literature establish that the
lack of a significant effect of changes in education on economic growth in the famous

paper by Benhabib and Spiegel (1994) is due to measurement error in education.

16
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They use an additional data set with educational information to instrument for the

education variable used by Benhabib and Spiegel (1994).

Bonjour et al. (2003) in the American Economic Review estimate the returns to ed-
ucation using data on UK twins and follow the approach of Ashenfelter and Krueger
(1994) by asking each twin to report both his or her own education and that of the

other twin.

Bjerk (2007) in the Journal of Quantitative Criminology use a household’s per-
centiles in the income and wealth distributions as two indicators of economic re-
sources when studying the effect of a household’s economic resources on youth

criminal participation.

Drago (2008) in a recent IZA Working Paper analyses the effect of self-esteem on
earnings and has measures of self-esteem from two surveys conducted seven years

apart.

17
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Appendix B: Programming code to implement the im-
proved IV estimator in R

optimal.iv=function(y,x1,x2,W)

{

n=length(y)

y=matrix(y,n,1)

xl=matrix(x1l,n,1)

x2=matrix(x2,n,1)

W=as.matrix (W)

X1=cbind (x2,W)

Z1=cbind(x1,W)

pil=solve (t(Z1)%*%X1) %*ht (Z1) %*%hy
pi2=solve (t (X1)%*%Z1) %)t (X1) %*%y

el=y-X1%x*%pil

e2=y-Z1%*%pi2

What=W%*%solve (t (W) %*x%W) %*%t (W)

Ki=solve (t (x1)%*%x2-t (x1) %*%What)*%x2) %*% (t (x1) -t (x1) %*/What)
K2=solve (t (x2)%*%x1-t (x2) %*%What)*%x1) %*% (t (x2) -t (x2) ¥%*/What)
b1=K1%*%y

b2=K2%*%y

vi=var (el) *K1%x}%t (K1)

v2=var (e2) *K2%*%t (K2)

c12=cov(el,e2) *K1%*%t (K2)

lambda=(v2-c12)/(v1+v2-2%c12)

bopt=lambda*bl+(1-lambda)*b2

sb=sqrt (lambda~2*v1+(1-lambda) ~2*v2+2*lambda* (1-lambda)*c12)
cl=bopt-1.96%*sb

cu=bopt+1.96*sb
return(list(b1=b1l,b2=b2,bopt=bopt,pil=pil,pi2=pi2,lambda=lambda,cl95=cl,cud95=cu))
}
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