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Abstract

Spatial management of a fishery under parameter uncertainty is analyzed. The habitat

is divided into two areas, and the effort level in the two areas may be different. The

migration of biomass between the areas follows a diffusion process; two different spec-

ifications are considered. The model features logistic growth and Schaefer production

functions. The intrinsic growth rate is treated as uncertain; the uncertainty is sym-

metric and spatially homogeneous. It is found that the optimal, spatial distribution

of effort with respect to expected harvest is neither homogeneous or heterogeneous

everywhere, but homogenous for a given subset of the parameter space and heteroge-

neous elsewhere.
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Introduction

Recently, there has been a surge in the interest for spatial models among fish-

ery economists. Particularly, an extensive literature on marine reserves has

emerged over several years. This development towards spatial notions in fish-

ery economics in particular, and renewable resource economics in general, is

welcome (Wilen 2000). Although the model in this paper is simpler than the

sophisticated models common among ecologists, it is a step up from the tradi-

tional, homogenous models often employed in fisheries economics.

To our knowledge, the literature on spatial management in fisheries which

abstracts from the extremity of reserves is limited (reserves are indeed extreme,

requiring effort in the reserve to be zero, compared to the range of possible spa-

tially heterogenous effort distributions). Sanchirico and Wilen (1999) develop

a broad framework for modeling fisheries in a patchy environment. In fact, our

model is a special case of that framework; we add parameter uncertainty and

optimal management. Under open-access, Sanchirico and Wilen (1999) find that

the equilibrium distribution of fishing activity depends on bioeconomic forces

both within patches and between patches, and of course on the underlying eco-

logical structure. Further, the interaction between movement of biomass and

effort is described. In a later work, Sanchirico and Wilen (2005) derive an opti-

mal, spatial management scheme in a deterministic and spatially heterogeneous

renewable resource model (homogeneity is a special case) with input and output

taxes and a focus on equilibria. They compare their findings to the case where

taxes cannot be assigned with respect to spatial measures, and find, not surpris-

ingly, that spatial explicit taxes are superior by various measures of superiority.

In our model, the underlying resource is spatially homogenous, and we consider

uncertainty. We are also focusing on the steady state of the system. Special

cases of our and the Sanchirico and Wilen approach (i.e., no uncertainty and

homogeneity, respectively) should then be comparable. Herrera (2006) analyzes

a multispecies model with persistent spatial heterogeneity, where harvest is non-

selective. Inter alia, he finds that spatially specific management may be more

efficient and provide an increase in the net present value of the fishery.

In the literature concerning marine reserves, economists usually find incen-

tives to establish reserves under ‘leading’ assumptions, such as sink-source dy-

namics and spatially heterogenous uncertainty. The evidence from introducing
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homogenous uncertainty is ambiguous, apart from the abundant evidence of eco-

logical benefits. This literature is extensively reviewed in Grafton et al. (2005).

Our analysis provide a rationale for marine reserves in certain cases, even in the

long-term steady state equilibrium, without any ‘leading’ assumptions. When

such results were discussed previously, they were usually conditional on, e.g., a

stock previously heavily overfished (Pezzey et al. 2000).

This analysis considers optimal steady states in a simple fishery model under

parameter uncertainty. The uncertainty is spatially homogenous and symmetric.

Looking at expected harvest, we numerically compute the optimal distribution

of effort. The approach is more general than considering marine reserves. Es-

tablishing a marine reserve is found to be optimal for several sets of parameters,

where a marine reserve is implied when the optimal effort level in one area is

zero. An interesting finding is that in parts of the parameter space expected har-

vest has two local maxima and which one of these represents the global maxima

depends on the parameters. A surprising implication is that it may be optimal

to focus effort in the smaller of the two areas and further to establish a marine

reserve in the bigger area in particular cases. In other cases there is an other

type of solution with a more conventional nature, where effort is focused in

the big area and the small area is closed to fishing, i.e., a marine reserve. Ulti-

mately, we are able to discern between homogeneous and heterogeneous optimal

distributions of effort in parameter space.

Single Area Model

We consider a single area model in order to examine limitations of the model

and demonstrate how the uncertainty is introduced. Growth (f(x)) is logistic

and harvest (h(E, x)) follows Schaefer. The stock dynamic equation is thus

ẋ = f(x)− h(E, x)

= rx
(
1− x

K

)
− qEx

where x is stock level, r is intrinsic growth rate, K is carrying capacity, q is

catchability, and E is effort. Cf. Clark (1990). Both K and q are normalized

to unity without loss of generality. The rate of growth is uncertain. To keep it

simple, the rate of growth takes on two values and the values may be given as

r0 · (1 + δ) and r0 · (1− δ). r0 is then the mean and r0δ the standard deviation.
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Expected harvest is then

E[h](E) = βh(E, x∗h) + (1− β)h(E, x∗l )

where β is the probability of the high rate of growth and x∗h is the steady state

stock level that will arise from the realization of r0 · (1 + δ). x∗l is the steady

state stock level that will arise from r0 · (1− δ).1 We have

x∗h =
r0 · (1 + δ)− E

r0 · (1 + δ)
, x∗l =

r0 · (1− δ)− E

r0 · (1− δ)
(1)

Note that x∗i = 0 for E big enough, i = h, l. Substituting these expressions into

the expected harvest and resolving with β = 1/2 yields

E[h](E) =
E

2

(
r0 · (1 + δ)− E

r0 · (1 + δ)
+
r0 · (1− δ)− E

r0 · (1− δ)

)
Assuming risk neutrality, the optimal effort maximizes expected harvest and is

here derived as

Eopt =
r0 · (1 + δ) · r0 · (1− δ)

2r0
, for δ ≤ 1/2 (2)

Notably, the expression is quadratic in δ.2

The discussion above presumes that effort is such that both steady state

stock levels are positive. This is not true for effort levels above the ‘critical’

effort level E = r0 · (1 − δ) (see expressions in (1)). It turns out that it is

optimal to let effort exceed this level when δ > 1/2. Then we have x∗l = 0

and Eopt =
r0 · (1 + δ)

2
for δ > 1/2, which further implies x∗h = 1/2. Note that

the expression for optimal effort in this case is linear in δ, cf. earlier, and that

x∗h attains its maximum sustainable yield (MSY) level. It is also worth noting

1 This formulation violates the dynamic equation, as it implies that the stock level reaches
the steady state instantly after the uncertainty is resolved. Thus, the notion of a steady state
is more related to a one-shot game, where the fisher (or manager) has one opportunity to
chose effort level and must stick to that forever, rather than a dynamic fishery where the
uncertainty is resolved several times, fishers learn and adapt and so forth. The simplification
is attractive because it promotes tractability. Further, one might sometimes wonder whether
particular fisheries, and other common pool resource exploitation as well, actually have a lot
in common with the one-shot game (we have the myopic behavior often observed in mind).

2 In later sections we focus on β = 1/2 (for reasons of simplicity), which means that the
uncertainty of the rate of growth is symmetric. Thus, the symmetric uncertainty case is of
primary interest also here. The single area model is readily solvable for any β; the optimal

effort level is more generally given as Eopt =
r0·(1+δ)·r0·(1−δ)

2(β·r0·(1+δ)+(1−β)·r0·(1−δ))
.
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that when x∗l = 0, there is only one term contributing in the expected harvest

expression. That is, the ‘bad’ state is not taken (properly) into account. This

limits the value of the model at these high levels of effort.

Figure 1 demonstrates expected harvest as a function of effort for two dif-

ferent levels of uncertainty. The mean rate of growth is r0 = 1. E[h] changes

fundamentally as effort increases beyond r0 · (1 − δ). For δ = .5, expected

harvest has two global maxima, one on each side of r0 · (1 − δ). For higher

levels of uncertainty, the ‘optimal’ effort levels are always to the right of the

‘critical’ level of effort. This is demonstrated in Figure 2, where optimal effort

is shown as a function of δ. It is evident that we want to disregard situations

where E > r − δ. Note how expected harvest behaves close to the ‘critical’

level; we will recognize a similar behavior of expected harvest in the two area

model. A last thing suggested by Figure 1 is that expected harvest decreases as

δ increases.

Two Area Model

In this section the model is extended to allow for spatial dispersion of effort.

Specifically, there are two areas and separate logistic growth functions that apply

to each subarea. Migration of biomass between the areas is density dependent

and modeled as a diffusion process. The stock dynamic equations are then

g1(x1, x2) = f(x1, α) +m(α)
(

x2

1− α
− x1

α

)
− αh(E1, x1, α)

g2(x1, x2) = f(x2, 1− α)−m(α)
(

x2

1− α
− x1

α

)
− (1− α)h(E2, x2, 1− α)

where (x1, x2) are the biomass levels in the two areas, 1− α denotes the share

of habitat allocated in area 1, α is thus the share allocated to area 2, and

m(α) is the rate of migration, which may in general depend on α. f(x1, α) =

rx1

(
1− x1

α

)
is the logistic growth function, where x1 is the biomass level, α

is the carrying capacity, and r is the rate of growth. The carrying capacity in

the entire habitat is normalized to 1, and the habitat is further assumed to be

homogenous across the entire habitat. h(Ei, xi, αi) = qEi
xi

αi
, i = 1, 2, is the

Schaefer production function, where Ei is the level of effort, αi is the carrying

capacity, and q is the catchability coefficient. (The subscripts denote the area

of which the variable belongs.) Note that the way the production function
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Fig. 1: Expected harvest along effort, E. r0 = 1. δ = .4 (solid line) and δ = .5
(dashed line).

Fig. 2: Optimal effort level along δ, r0 = 1.
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is formulated, a proper interpretation is that it is the harvest per unit area.

Thus, we must control for the area size in the dynamic equations. Further, the

effort level is interpreted as effort per unit area. The catchability coefficient q

is normalized to 1. The difference
(

x2

1− α
− x1

α

)
governs the diffusion process;

the flow of biomass is always directed into the area with the lower density.

We emphasize that in this model, everything about the two areas and sub-

stocks are identical, apart from the possibility that effort may be different. This

is a key point, and is what distinguishes this model from previous research.

It is worthwhile to note that the growth in the two areas is assumed to only

depend on the local stock density (as in Kvamsdal and Sandal (2008), and as

opposed to Bischi et al. (2007); Flaaten and Mjølhus (2005) treats both alter-

natives.). This implies that whenever the stock density is distributed hetero-

geneously, which will occur whenever the effort is distributed heterogeneously,

the total growth in the stock is smaller than what it would have been if the

same amount of biomass was distributed homogeneously. This is pointed out

in Kvamsdal and Sandal (2008). Moreover, note that the model is equivalent

to the homogenous, single area model under homogenously distributed effort;

E1 = E2 (which leads to
x1

α
=

x2

1− α
and thus a zero migration term).

The expressions describing the steady state stock levels are complex and re-

sist interpretation. We are though, able the express them as functions of effort

levels, and will denote them by x∗1(E1, E2) and x∗2(E1, E2). (Although, for sim-

plicity, the arguments are at times omitted.) For the sake of completeness, the

full expressions are given in the appendix. Note that the basic model is compa-

rable to the model in Hannesson (1998), excluding the possibility of fishing in

both areas; in Hannesson (1998) one of the areas is a marine reserve.

We still consider the rate of growth to be uncertain. As before, the rate

of growth can take a high value or a low value with probabilities β and 1 − β,

respectively. The two values take the form r0 · (1 + δ) and r0 · (1 − δ), where

δ ≥ 0. The mean rate is normalized; r0 = 1. Further, let H(E1, E2) denote

total harvest. The expected total harvest is then given by

E[H](E1, E2) = βH(E1, E2)|r=r0·(1+δ) + (1− β)H(E1, E2)|r=r0·(1−δ)
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where

H(E1, E2) = αh(E1, x
∗
1, α) + (1− α)h(E2, x

∗
2, 1− α)

= E1x
∗
1(E1, E2) + E2x

∗
2(E1, E2)

E[H](E1, E2) describes the yield-effort relationship. Under fixed prices, the

surface describing expected harvest is proportional to the surface of the revenue

function. Figure 3 shows the shape of this surface, when α = 0.5, β = 0.5,

δ = 0.45, and m(α) = 0.5. Most notably is the ‘trench’ in the surface. Beyond

the ‘trench’, as observed from the origin, the steady state stock levels are zero

in both areas when the rate of growth obtains r = r0 · (1 − δ). Thus, the low

rate of growth yields no harvest in steady state, i.e. such effort levels drives

the stock to extinction with probability 1− β. This ‘trench’ corresponds to the

‘critical’ level of effort discussed in the one area model. We will not consider

effort levels beyond the ‘trench’ any further. Also, the analysis of the single area

model suggest that there is some upper level of uncertainty at which the model

is well-behaved. We do not provide this upper limit in the two area model, but

we for most considerations we limit ourself to δ ≤ 0.5. This level is naturally

inspired by the results from the previous section.

Optimal effort

Under risk neutrality, we are interested in the effort levels that maximize ex-

pected harvest. The complexity of the stock level expressions prohibits analyt-

ical solutions, and thus we resort to numerical calculations. We focus on the

case β = 1/2. Thus, α, δ, and m(α) forms our parameter space to investigate.

Area size (α) may be considered as a decision variable or as given exogenously,

e.g. in a patch model like Sanchirico and Wilen (2002). Both uncertainty (δ)

and migration (m(α)) are treated as exogenous.

First, let us look at the simple model in which the migration rate is constant

and equal to m0 over all area sizes (Hannesson 1998). It is then possible to draw

a few conclusion before diving into the numerical results. When the migration

rate is zero, there is no interaction between the two substocks and they can be

treated separately. Further, they are identical up to area size, and the optimal

effort level per unit area is the same in both areas; E1 = E2. When the migration

rate is infinite, that is, the redistribution of the biomass is instantaneous, the
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density will always be identical in both areas, and one might conclude that opti-

mal effort should be equal in both areas as well. However, when redistribution is

instantaneous, distribution of effort does not matter, only total aggregated level

of effort matters.3 For simplicity, we may choose the homogeneous distribution

of effort (E1 = E2) to be the solution when m(α) = m0 →∞.4

The homogeneous distribution of effort seems to play a central role when it

comes to optimality. When E1 = E2, the two area model is equivalent to the

one area model, and total optimal effort is described in equation (2) and Figure

2. Indeed, we find that the homogenous distribution is the optimal distribu-

tion for a nontrivial subset of the parameter space we are investigating. Figure

4 shows the parameter set where the optimal distribution is homogeneous for

all area sizes. The plotted points (‘boxed’) is the smallest level of uncertainty

necessary for heterogeneous optimal distributions, given a migration rate m0.5

Note that small migration rates are problematic; when solving for x∗1(E1, E2)

and x∗2(E1, E2) we end up with a square root which argument is negative for

small migration rates in combination with a range of values for the other param-

eters and variables. This yields complex valued stock levels, and it is unclear to

us how to treat and interpret such results. This limits the parameter space we

are able to investigate.

The above result is perhaps the most important result in this analysis. How-

ever, there are some surprising and interesting observations to be made outside

the ‘homogeneous area’ discussed above. It turns out that there are two dif-

ferent types of heterogeneous solutions, and that the parameter space can be

characterized further into subsets where the different types are optimal for all
3 If instantaneous redistribution of biomass seems unlikely, it is worth noting that it is a

standard assumption in aggregated biomass models, e.g. like those discussed in Clark (1990).
4 Note that when the density of the stock in the two areas is equal, such as under an infinite

migration rate, there exists a total effort level that corresponds to steady state stock levels
equal to the MSY stock levels. Thus, when the migration rate is infinite the maximal harvest
level is independent of area size. This is exactly the conclusion of Hastings and Botsford
(1999). We will return to their findings later.

5 As m0 increases, the expected harvest surface ‘flattens out’, and the numerical procedure
we use gets a bit noisy. (E.g., the numerical procedure may report that the optimal effort
levels are heterogeneous for seemingly random area sizes, whereas it reports that optimal
effort is homogeneous for both smaller and bigger areas. An explanation of this behavior of
the optimization procedure and further technical details are available from the corresponding
author on request.) Thus, the other set of points in Figure 4 (diamonds) shows where the
numerical procedure produces a perfect series of homogeneously distributed optimal effort
levels (that is, below the diamond points). The points of interest, however, are the ‘boxed’
points, where a ‘consistent’ break from the homogeneous distribution is observed, compared
to the random breaks observed between the two set of points.
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Fig. 3: Expected harvest in (E1, E2), where α = 0.5, β = 0.5, δ = 0.45, r0 = 1
and m0 = 0.5.

Fig. 4: Characterizing the parameter space: Optimal effort is homogeneously
distributed below ‘boxed’ points.
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area sizes. Also, there is a region where one type is optimal for some area sizes

and the other type is optimal for other area sizes. We will return to this char-

acterization of the parameter space. First, however, we study the two different

types of heterogeneous solutions. The two types are associated with two local

maxima of the expected harvest function (Figure 3).

The two types of solutions are demonstrated in Figure 5, where δ = .5 and

m0 = 1 for area sizes in the range [0.05 . . . 0.5]. The figure shows how the two

types of solutions distributes effort between the two areas. Effort in area 1 is

shown along the x-axis and effort in area 2 is shown along the y-axis. One of the

solutions suggest that the smaller area should be a marine reserve and that all

effort should be located in area 2 (note that when the area size is less than half,

area 1 is the smaller area of the two). The amount of effort in area 2 is nonzero

and depends on the area size; we have E2 > E1. This solution corresponds

to the blue ‘diamond’ points in Figure 5. From obvious reasons, we will refer

to this type of solution as the ‘left hand side’ (LHS) solution. Effort per unit

area increases with area size. The other solution suggest that effort should be

higher (or rather, denser) in area 1, however not always zero in the other area.

For relatively large area sizes, area 2 is a marine reserve with zero effort per

unit area. Notably, we have E1 > E2. This solution corresponds to the red

‘circle’ points in Figure 5. We refer to the type of solution as the ‘right hand

side’ (RHS) solution. It is worth noting that the two solutions are identical in

the extreme cases of α = 0 (not shown in the figure, but both solutions have

E2 = .375; effort level in area 1 does not matter as it does not exist when α = 0)

and α = 0.5 (both solutions have E = .832 in one area and zero in the other;

which area is irrelevant because of the symmetry at α = 0.5).

In Figure 5, the RHS solution is the optimal solution for all area sizes. In

Figure 6 we have demonstrated a situation where the LHS solution is optimal

for all area sizes. Here, m0 = 1 as before, but δ = .46. As we will see, the LHS

solution dominates the RHS solution for ‘small’ levels of uncertainty, whilst it is

the other way around for higher levels of uncertainty. We are restricted to the

‘heterogeneous’ parameter area (see Figure 4), and ‘small’ levels of uncertainty

are to be understood relative to that area. Note that the LHS solution does

not change much from the change in uncertainty (from δ = .5 to δ = .46), but

that the RHS solution changes quite a bit. In Figure 7 (a) and (b) the level of

uncertainty is again δ = .5, but the migration rate is m0 = 0.5 and m0 = 2,
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respectively. In (a) the LHS solution is optimal for α > .225; in (b) the RHS

solution is optimal for all area sizes. Note that effort is smaller for the LHS

solution and higher for the RHS solution when the migration rate is higher.

Another aspect of these different solutions is that expected harvest is basically

the same for both types of solutions for a given parameter set.6 Undoubtedly,

the structure of the LHS solution is ‘simpler’ than that of the RHS solution,

which suggest that LHS may be preferable since expected harvest is more or

less the same for both solutions. However, one needs to formally consider the

cost related to a more complex management scheme to be able to make such

assessments in a satisfactory fashion.

Not only is the expected harvest basically unchanged across the two different

solutions, it is also practically constant over different area sizes for a given level

of uncertainty. That is, when the optimal distribution of effort changes over

area sizes, the change in distribution offsets the potential loss of expected har-

vest from a different biological structure. This further suggests that a different

biological structure do not offer the potential to increase expected harvest. As

long as there is no constraint on effort in the model (e.g., budget constraint),

this result is perhaps to be expected. Hastings and Botsford (1999) derives

the same result analytically in the case of marine reserves with an assumption

comparable to an infinite migration rate.7 It would be interesting to look into

which of the two alternative distribution structures described above that add

up to most total effort. Or rather, which of the alternatives is the least costly

one. This requires further work, but preliminary results suggest that solutions

of the LHS type require less effort. A thorough investigation of these issues

should consider the curvature of the marginal cost of effort.

The result that effort per unit area optimally is higher in the small area

(E1 > E2; the RHS solution) is to a certain extent counterintuitive and unex-

pected (to us, at least). One may comprehend the deviation to heterogeneous

distribution of effort as some kind of hedging towards the uncertainty about the
6 The relative difference in the expected harvest from the two solutions is in the order of

10−3 or smaller.
7 Hastings and Botsford (1999) assumes that the density of larvae, which is the only ‘year

class’ subject to migration, is always equal in the entire habitat. They further assume that
the stock is fished down to zero outside the reserve, and thus that reproduction is restricted
to the reserve. In other words, they have a sink-source model. Given the stringency of the
assumptions Hastings and Botsford (1999) find necessary to derive their result, we are skeptical
about the possibility of analytically proving a similar result in a more general model like ours.
However, our numerical calculations support such a conjecture.
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Fig. 5: Two types of heterogeneous distributions of effort. δ = .5 and m0 = 1.
Note: The end points corresponds to the area sizes α = 0.5 and α = 0.05,
and each point in between corresponds to a change in area size of .025.

Fig. 6: LHS (blue ‘diamond’) and RHS (red ‘circle’) solutions. δ = .46 and
m0 = 1.
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(a)

(b)

Fig. 7: The two types of solutions (LHS and RHS) under different migration
rates: (a) m0 = 0.5, (b) m0 = 2. δ = .50 in both panels.



14

rate of growth. The idea is to exploit a part of the stock to a lesser degree such

that there is a more solid capital stock at hand when the bad state (low rate of

growth) occurs. As there is virtually no change to expected harvest across area

sizes given the optimal effort levels, it does, however, make sense to sustain a

higher stock density in the big area compared to the alternative (of a smaller

density in the big area, which intuitively comes across as more vulnerable). The

LHS solution, on the other hand, with more effort per unit area in the bigger

area (E2 > E1), is easier to comprehend. The intuition is basically to leave

some relatively small area unexploited for a rainy day (not exploited directly,

at least; a positive migration rate means that the ‘protected’ area is indirectly

exploited). Note that the LHS solution is equivalent to establishing a marine

reserve in area 1. The benefits from marine reserves have been debated, but

there seems to be consensus that there are at least biological benefits connected

to reserves (see Sanchirico (2000) for a discussion). Again, a deeper economic

investigation into these issues should consider the benefits from a simple man-

agement structure (compare the LHS and RHS solutions in, for example, Figure

5) and the costs from ignoring the optimal distributions (e.g., from preferring

the LHS solution because of its simplicity), but also the value of stability of the

biological system. A higher density in the big area means a larger total stock,

which intuitively means (to us, at least) a more stabile or robust stock when it

comes to uncertainty.

Finally, we address the question of how to characterize the parameter space

in terms of the optimality of the different solutions. We have already established

the subset of parameters associated with homogeneous distributions in Figure

4. This characterization is further refined in Figure 8. Between the ‘box’ points

(black) and the ‘diamond’ points (blue), the LHS solution type is optimal for

all area sizes, and above the ‘circle’ points (red) the RHS solution is optimal for

all area sizes. The optimal choice between the to types LHS and RHS depends

on the area size in the region between the ‘diamond’ (blue) and ‘circle’ (red)

points; the LHS solution is preferred for bigger area sizes.

Alternative Migration Specification

It may be more realistic to model the migration rate as dependent on area size.

Suppose, for example, m(α) = m0 · α(1 − α). The homogeneous distribution

is still optimal in a certain subset of the parameter space. Note that when the
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Fig. 8: Characterizing the parameter space: Optimal effort is distributed accord-
ing to the homogeneous solution below ‘box’ points (black), according
to the LHS solution below ‘diamond’ points (blue), and according to the
RHS solution above the ‘circle’ points (red).
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distribution of effort is homogeneous, the density of fish is identical everywhere

and the migration term vanishes, and the resulting expected harvest is identical

in the two specifications. Numerical investigations (not provided at present)

suggest that the homogeneous distribution is optimal for the alternative migra-

tion model in much the same subset of the parameter space as was found in the

previous section (Figure 4). The comparison is somewhat troublesome, however,

as this specification implies very small migration rates for small area sizes; small

migration rates are generally problematic. The two types of solutions (LHS and

RHS) are shown in Figure 9. The results resembles the corresponding results

from the constant migration rate model (Figure 5). Observer however that the

effort level in area 2 does not run off to infinity for small area sizes in the RHS

solution, as it does under the constant migration rate specification. This is

maybe more a realistic behavior of the solution than seen earlier.

Note that m0 is set considerably higher in the alternative migration results

than previously (m0 = 6 vs. m0 = 1); it is not clear to what values of m0 should

be compared, given the different structure of m(α). (A suggestion is to look at

the mean migration rate over area sizes. The mean over all possible area sizes

(α ∈ [0, 1]) for the alternative migration specification with m0 = 6 is 1.)

Discussion

The main result in this paper is the characterization of the parameter space

into different regions of homogeneous and heterogeneous optimal distributions

of effort (Figure 4 and Figure 8). Our characterization is based on solutions to

be homogeneous for all area sizes. It is possible to make the same characteriza-

tion and only require that solutions up to a given area size is homogeneous, and

thus construct a hyperplane in the parameter space (then consisting of level of

uncertainty, rate of migration and area size) which discerns the homogeneous

and heterogeneous solutions in more detail. The subset in Figure 4 correspond-

ing to the homogeneous solution may come across as rather large compared to

the considered range of the different parameters. There are two objections to

such an observation. First of all, given the normalization of different param-

eters (that is, mean rate of growth, total carrying capacity and catchability

coefficient), we are in no position to judge which region of the parameter space

is larger’ in the sense of being more likely. The likeliness of different regions
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Fig. 9: LHS (blue ‘diamond’) and RHS (red ‘circle’) solutions under the alter-
native migration specification. δ = .50 and m0 = 6.
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is obviously of utmost concern when it comes to applications to real fisheries.

Such questions are also best addressed through empirical studies. Secondly, we

have largely chosen to limit ourselves to the region where δ ≤ .5, first of all to

avoid computational issues (δ = .5 poses a natural limit in the single area model

to which we have sought comparability). In a more comprehensive treatise, the

entire parameter space which supports a sound model should be considered.

The ‘size’ of the parameter subset connected to the homogeneous solution can

only be determined with these two concerns in mind. Notwithstanding, the size

itself of parameter subsets is really of minor concern. We are more concerned

with exploring possibilities and limitations of the present model.

When the level of uncertainty reaches a certain level, expected harvest is

higher when effort is distributed heterogeneously. Depending on the level of un-

certainty, effort distributions implying one area being a marine reserve are op-

timal. Figure 8 suggests that marine reserves are optimal when the uncertainty

is relatively close to the ‘homogeneous’ region. However, increasing uncertainty

further gives rise to different types of heterogeneous effort distributions. In-

terestingly enough, it is sometimes optimal to put more effort per unit area

into the smaller of the two areas (E1 > E2). This may be interpreted as some

kind of hedging strategy and indicates that a larger density of fish in the big

area performs better given the bad (low) outcome of the uncertainty compared

to how bad the smaller density of fish in the small area performs given the

good (high) outcome. However, the distributions where E1 > E2 have a rather

complex structure, and one may argue that the more simple structure of the

distributions with E2 > E1 is valuable, and that it outweighs the error of ig-

noring the other type of distribution. This argument is particularly compelling

given the small difference in expected harvest between the two types of effort

distributions. An analysis of these issues is a potential extension of this work.

Finally, we change the shape of the migration term, such that the rate of

migration depends on area size. There are convincing arguments for both migra-

tion models, and we do not go into that discussion here. However, the findings

follow much the same pattern as before; the homogeneous solution is dominant

for a considerable subset of the parameter space, and there exist two types of

solutions outside this subset which are optimal under different parameter con-

figurations.

Future challenges in this line of research are many. First of all, a dynamic
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analysis abstracting from the steady state would be highly valuable. Further,

it is natural to think of extensions of the present analysis to uncertainty about

other parameters, several parameters, other kinds of uncertainty, and ultimately

uncertainty about the modeling itself. Also, a multispecies approach would

be interesting. However, what the present analysis lacks is interpretation into

an economic framework. Introducing a budget constraint (or rather, marginal

costs) on effort, for example, is prone to change the optimal distribution quite

a bit, particularly outside the range of the homogeneous solution. Also, several

issues of distributing effort heterogeneously, for example congestion, adminis-

tration and enforcement, or different variable costs, could be addressed.

Appendix: Steady state expressions

Set g1(x1, x2) = 0 and solve for x2 to get8

x∗2 =
x1α (r − rα− rx1 −m(α) + E1(α− 1))

m(α)(α− 1)

which is the steady state expression of x2 in terms of x1, α, and the effort pair

(E1, E2). Substituting x∗2 into g2(x1, x2) yields a polynomial in x1 to the fourth

degree. The polynomial has two real and two complex roots. The complex roots

has no meaningful economic interpretation, and I focus on the two real roots.

One of these is always zero, this leaves one interesting solution. Let it be x∗1.

An underlying condition not yet mentioned is xi ≥ 0. The interpretation

of this condition is straightforward. The implementation of it, however, tend

to complicate things, making both x∗i , i = 1, 2, piecewise continuous functions,

instead of continuous functions in all parameters. Temporarily disregarding this

technicality, we are able to describe x∗1 in general terms;

x∗1 = d1ψ +
d2E

2
1 − d3E2

d4ψ
− d5E1 + d6

where

ψ = 3

√
c1 − c2E1E2 + c3

√
c4E3

2 + c5E3
1 − c6E2

1E
2
2 − c7E1E2 + c8 + c9E3

1

where all ci, di ≥ 0 are different combinations of r, α, and m(α). Note that x∗1,

8 Note that the catchability coefficient q is normalized to one.



20

and consequently x∗2, may be interpreted as a function of the pair (E1, E2).
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