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Abstract 

Alleviation of poverty is a central issue in Nepal. Given the limited stock of 
land, and the infant/unorganised manufacturing sector, increased demand for 
food has to be satisfied by improving production efficiency. This paper 
examines how this could be achieved.  An SDF model and DEA model 
identify the existence of a high degree of technical inefficiency in Nepalese 
agricultural production system, suggesting that there is a substantial 
prospect of increasing agricultural productivity using the existing level of 
inputs and resources more efficiently.  Among the three farm sizes in the 
data set, medium size farmers achieve a higher technical efficiency than 
large and small farm sizes, suggesting that productive efficiency can be 
increased with the encouragement of creating medium size holdings. The 
observed decreasing returns to scale also implies that productivity gains 
could be achieved by breaking up of large farms into small family farms. The 
technical inefficiency model suggests the potential for shifting production 
frontier upwards by providing ownership of land, increasing farmers‟ 
education, and knowledge and increasing land quality including irrigation 
facilities.  

JEL Classifications: D24; L25; Q12 
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Measuring the Extent of Technical Inefficiency in Nepalese Agriculture 
Using SDF and DEA Models 

 

I. Introduction  

In Nepal, much effort, time and money have been employed in different 
sectors of the economy to reduce poverty and inequality. During the last 
decade, aggregate poverty declined, however, the decline was uneven 
across geographical regions. This resulted in a sharp increase in regional 
inequality (WB, 2006). Recently, all political parties have agreed to alleviate 
poverty through land. However, as Nepal is a mountainous country, only a 
small part of the land could be brought under cultivation.  Population 
pressure on the limited supply of useful land has been mounting over the 
years. Against this background, the aim of this article is to extract the 
principal findings from the empirical analyses of technical efficiency and 
relate them to the research questions. 

In this article two methods of analysis, namely the parametric stochastic 
distance function (SDF) and the non-parametric data envelopment analysis 
(DEA), will be applied using the farm household survey data to measure 
technical efficiency in Nepalese agriculture. The primary analysis is based on 
the parametric SDF approach to measuring levels of technical efficiency. 
Using the same dataset, technical efficiency is also measured by applying 
the non-parametric DEA methodology to check the consistency and 
robustness of the specified model and to compare results between 
parametric and non-parametric techniques. The estimated technical 
efficiencies are also related across farm-size groups to address the age-old 
debate in the international literature on farm size and efficiency. The 
efficiencies will also be related to the specific geographic and ecological 
zones distinct to Nepalese agriculture.  

The article is organized as follows. Section 2 briefly explains the basic 
characteristics of the farming system and the data, including the source and 
method of collection. Section 3 discusses the construction of variables used 
to estimate the empirical models. Section 4 presents the estimated results 
from the SDF frontier model. Results on returns to scale and technical 
efficiency are discussed further in different subsections. Technical efficiency 
scores are also connected to farm size and ecological zone. Section 5 
estimates the non-parametric DEA model and compares the technical 
efficiency results with those derived from the parametric methodology. This 
section also compares results on the determinants of farm efficiency 
between the direct estimates (first stage) obtained from the SDF model and 
the second stage results from the DEA model. The article ends with 
conclusions and a discussion of policy implications in Section 6. 
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II. Basic Characteristics of Farming and Data 

Nepal is a landlocked mountainous country.  Steep slopes and permanent 
snow cover large areas; hence, only 20% of Nepal‟s total land is cultivated. 
Nepalese society is very hierarchical in nature in terms of production 
relations. Land appears to be one of the basic assets and the main source of 
income for the majority of Nepalese people. However, the scarce farmland is 
unequally distributed and typically misallocated among potential users (NPC, 
1998; WB, 2006). Much of the agricultural land is occupied by a small 
number of upper income households, whereas a large number of lower 
income households are obliged to survive with less.  Landowners, who have 
more agricultural land, have fewer farming skills, and those with more skills 
have less adequate land for cultivation. Cultivation methods are still non-
mechanised. The landholding class that extracts the major share of the 
agricultural surplus largely invests in sectors other than agriculture.  
Agricultural productivity is much lower than in other countries in the region. 
Consequently, the relationship between land and poverty is embedded in 
Nepalese agrarian society.2 

A major portion of the income for poor people still comes from cultivation.  
Due to the specific nature of the subsistence type of rural economy, and the 
relationship existing among the different modes of peasantry (landowning 
and landless) and the patron-client relationship, people attach a unique value 
to land. Land has not only been the source of survival, family wealth and 
income generation, it has also provided a way of life and maintaining dignity. 
Lack of access to land can push people to social exclusion, reduce human 
capabilities and lead to political uprisings, violence and conflict 

The prospect of expanding agricultural land in Nepal is virtually non-existent. 
Increased food production to meet the needs of the growing population in the 
long term will have to come mainly through improvements in production 
efficiency and appropriate reorganisation of existing agricultural land. Hence, 
it is crucial to examine whether land reform can be a viable strategy in a 
subsistence agricultural country like Nepal. The answer to that question 
requires a comprehensive empirical study on productive efficiency in 
agriculture with respect to a redistributive land reform programme and its 
ability to ameliorate poverty.  

The data for this study are taken from the Nepal Living Standards Survey 
(NLSS) conducted in 2003 by Central Bureau of Statistics (CBS) Nepal.  A 
final adjusted total sample of 2,585 households is used for the empirical 
analyses in this article. The NLSS 2003/04 (CBS, 2004) details sampling and 

                                                 

2
 However, the scarce farmland is unequally distributed and typically misallocated among potential users (NPC, 1998; WB, 

2006). Much of the agricultural land is occupied by a small number of upper income households, whereas a large number of 

lower income households are obliged to survive with less.  Landowners, who have more agricultural land, have fewer farming 
skills, and those with more skills have less adequate land for cultivation. Cultivation methods are still non-mechanised. The 

landholding class that extracts the major share of the agricultural surplus largely invests in sectors other than agriculture.  

Agricultural productivity is much lower than in other countries in the region. Consequently, the relationship between land and 
poverty is embedded in Nepalese agrarian society. 
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data collection procedures as well as the instruments employed in the 
survey. The NLSS was with assistance from the World Bank and the UK 
Department for International Development (DFID), strictly following the World 
Bank‟s Living Standard Measurement Survey (LSMS) method. The survey 
provides a large database including detailed input and output data on 
agricultural production and wide range of household-specific social and 
economic information. The sample was taken from six geographical strata. A 
two-stage stratified sampling method was used to select the sample 
households. The sampling population consisted of 36,067 Primary Sampling 
Units (PSU) spread over all 75 districts of Nepal. The PSU are wards that 
represent the smallest administrative units of the country. In the first stage, 
334 PSU were randomly selected. In the second stage, 12 households were 
chosen for the interview with equal probability from each selected PSU, 
totalling 4,008 households. The survey was unable to reach eight PSU even 
after repeated attempts due to a Maoist insurgency.  Accordingly, these were 
dropped. The actual sample was 3,912 households covering 326 PSU 
representing all ecological zones in Nepal. It was problematic to include the 
sharecropping household data in the analysis for two reasons: first, there 
was no market value for sharecropped land and second, there was no 
location information for those lands. Therefore, sharecropping observations 
were excluded due to incomplete or missing data.  Some observations with 
implausibly low or high values were dropped as outliers. Recording or entry 
errors might have been responsible for the extreme values in these 
observations. It was problematic to include the sharecropping household 
data in the analysis for two reasons: first, there was no market value for 
sharecropped land and second, there was no location information for those 
lands.  

The dataset provides the information necessary to estimate the proposed 
empirical models discussed in this study. 

III. Construction of Variables and Farm Size 

Construction of Output Variables 

A production technology is characterised as the transformation of a set of 
inputs into a set of outputs. In the context of efficiency and productivity 
measurement, the choice of output variable(s) is very important. Many 
previous studies used physical yields of specific crops or the value of 
products per unit of farmland as the output variable.3 However, these are not 
relevant measures of overall efficiency since they are partial indices 
(Binswanger, Deininger and Feder, 1995).  

Moreover, agriculture is characterised by a joint production system where a 
specific set of inputs is used to produce a specific set of outputs. Specifically, 
small farm households in Nepal engage in subsistence mixed farming. 

                                                 

3
 Examples include Kimhi, 2006; Dorward, 1999; Haq, Khan and Ahmad, 2002; Alvarez and Arias, 2004. 
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Cereal crops dominate the peasant households, who sell some surplus or 
purchase some deficit amount of food items. Some recent studies attempted 
to aggregate total output into a single index, assuming all crops are equally 
important. Obviously, this may not be true. In this study four output variables 
are defined, incorporating 67 different crops, 7 livestock products, and some 
other farm related production output contained in the survey data.4 

Each output variable is measured in terms of Nepalese rupees (NR) and is 
obtained by multiplying the physical quantity by its respective average price.5 
The average price for each product was calculated from the per-unit selling 
prices of households.  

The four output variables are as follows:  q1= Cereal crop: This group 
includes paddy, maize, wheat, and other cereal crops and accounts for 
49.05% of total agricultural produce in the dataset.  q2= Pulses: This output 
includes 11 different types of pulses and legumes and 5 tuber and bulb crops 
and represents 9.84% of total production. q3= Cash crops consists of cash 
crops such as sugarcane, jute, tobacco, cotton, 5 oil seed crops, 8 spices 
and different winter and summer vegetables which comprise 31.09% of total 
output. q4= Other outputs: This includes 5 citrus and 12 non-citrus fruits and 
other minor outputs.  

Construction of Production Inputs 

Six production variables are defined so as to encompass the inputs used in 
agricultural production:x1=Human labour (hours): In Nepal human labour is 
intensively used in farming practices as mechanical inputs like tractors and 
power tillers are not common.6  The hired labour and family labour were 
added in order to construct the labour variable. The unit of labour employed 
is taken in standard hours.  

Farmed Land (hectares): Total land was divided into irrigated and rain-fed 
and treated as two separate production inputs as follows:X2= Irrigated land 
(hectares): area of farmed land with irrigation facilities. X3= Rain-fed land 
(hectares): area of farmed land without irrigation facilities.  

                                                 

4
Other household incomes derived from a variety of sources such as labour wages, non-agricultural enterprises/activities, 

remittances and transfer incomes, interests earned from bank accounts, shares, stocks, and treasury bills, internal and external 
pensions were excluded. The obvious reason for the non-inclusion of such incomes is that they have no direct connection to 

farm outputs. 
5
 In the NLSS 12 different units were used to measure agricultural product. It was therefore a little cumbersome to construct 

the average price. 
6
 Collecting accurate data on labour inputs in smallholder agriculture is difficult. However, in this study this variable is 

constructed as follows. As there was no standard wage rate for the hired labour in the data, a common daily wage rate was 

calculated from the prevailing rate that each household paid for hiring labour. The total number of hired labour hours for each 
household was then calculated by dividing the total expenditure for hired labour by the average wage rate. The family labour 

employed was calculated indirectly from the amount of time each family member engaged in agricultural activity during the 

year. 
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X4= Capital service7 (Rs): The capital share is included in the model as a 
proxy of risk aversion. First, farm assets and domestic animals are 
aggregated based on their respective prices. The capital service variable is 
then constructed, calculated as 10 percent8 of the total amount of farm 
assets.  

X5 = Purchased inputs (Rs): Expenses for purchased inputs, in particular 
fertilizers and seeds.  

X6= Other Costs (Rs): This variable includes the costs of irrigation, 
transportation, storage, improvements on land, repair and maintenance of 
equipment, veterinary services, animal fodder, and rent for draught animals, 
tractors, threshers and other machinery (expressed in Rs). 

A number of households contained zero observations for either output or 
input variables.  This problem has been addressed by constructing additional 
dummy variables that indicate for every observation whether each of the 
(four output and six input) variables has a zero value. This procedure means 
that efficient estimates are obtained using the full dataset.  

Construction of Farm-Specific Variables 

In addition to the variables described above, eight relevant farm-specific 

variables are included in the inefficiency effect model: 

Z1 = Owned land (hectares): To capture the effect of access to agricultural 
credit the amount of owned land is included in the model as a proxy of the 
ability of the owner to obtain credit by offering the land as collateral. 

Z2 = Value of land per hectare (Rs) is measured as the market value of land 
owned.   

Z3 = Extension Service (dummy): This takes on the value of 1 if agriculture 
extension service is received and 0 otherwise. 

Z4 = Age of the head of the household (years): This is intended to represent 
the experience of the farm manager. 

Z5 = Family head‟s education (years): This is the level of formal education (in 
terms of years) by the household head and is a proxy for the farm manager‟s 
skill. 

                                                 

7
 Farm assets and domestic animals are the major forms of household wealth or stock of capital in rural Nepal. Farmers rely on 

domestic cattle for draught power including tillage and transport, manure, milk, meat and as a stock of wealth. Farm equipment 

includes ploughs, carts, threshers, water pumps, tractors and power tillers, while livestock comprises buffaloes, bullocks, cows, 
donkeys, horses, mules, yaks and others. 
8
 In Nepal the official nominal interest rate is 10%. The capital share is taken as the equivalent of the interest rate. 
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Z6 = Access to road (hours) is the distance from the farm to a vehicle 
passable road.  

In Nepal, there are three main different agro-climatic zones: the Terai, 
Mountain and Hill regions. Each region is significantly diversified in terms of 
elevation and mode of agricultural production. For this reason, regional 
dummies are included in the model with the Terai region is reference: 

Z7 = Mountain dummy, i.e., the value is 1 if the farm is located in the 
Mountain region and 0 otherwise.  

Z8 = Hill dummy, i.e., the value is 1 if the farm is located in the Hill region and 
0 otherwise. 

In order to provide an insight into the age-old debate on small vs. large farm 
efficiency differences, this analysis aggregates groups of farms into small, 
medium and large based on the size of the operational holding. Following the 
World Bank (2006), farm size is categorised as follows: small farms are less 
than 1.00 hectares, medium farms are 1.00 to 2.00 hectares, and large farms 
are 2.00 hectares or more. 

Descriptive statistics for the farm data are presented in the Table 1. After 
discussing background and data the next section employs the empirical 
model of parametric SDF frontier to examine technical efficiency in Nepalese 
agriculture. 

IV. Parametric Stochastic Distance Function (SDF) Analysis 

The principal methodology employed in this article to measure technical 
efficiency is the stochastic distance function (SDF) approach. The main 
reason for this specification is that agriculture in developing countries shows 
substantial variability in production due to random factors, including resource 
availability, missing variables, environmental influences, weather, and 
measurement errors. Consequently, the frontier and technical efficiency 
results derived from deterministic methodologies, as well as DEA methods, 
could lead to biased estimates because those methods do not address 
stochasticity in the empirical model. Agriculture is also a joint production 
system where multiple outputs are produced by using multiple inputs. 
Previous stochastic frontier analyses are based on a single output or 
aggregated single index output, implicitly assuming that the weight of all 
products is equal. To overcome this problem, the distance function technique 
is applied to estimate the stochastic frontier that can accommodate the multi-
output multi-input problem.  

Depending on the nature of the production system, a distance function can 
be specified with either an input or an output orientation. If the application of 
inputs is more flexible than the outputs produced, the best choice is an 
output-oriented specification (Coelli et al., 2005, Paul and Nehring, 2005). On 
the other hand, if inputs are essentially fixed, then output composition is the 



 7 

primary economic performance determinant and an input-oriented 
specification is preferable. In Nepalese agriculture the balance of inputs used 
is more flexible than outputs and therefore an output distance function is 
specified and the results are compared and contrasted with the results 
obtained from the non-parametric DEA model. 

The translog SDF methodology employed largely follows Pascoe, Koundouri 
and Bjørndal (2007), O‟Donnell and Coelli (2005), Paul and Nehring (2005), 
and Coelli and Perelman (1996, 2000). Those authors extended their 
methodology from that of Shephard (1970).  

Given a production possibility frontier, the distance between the frontier and 
a specific farm is a function of the vector of inputs used, „x’, and the level of 
outputs produced, „y’. Consider a case of a multiple output multiple input 

production function, where a farm uses the p1 input vector x = (x1, …  xp)’ to 

produce the M1 output vector q = (q1, …, qM)’, the production relation can 
then be explained by the technology set as follows. 

S= {(x, q): x can produce q} (1 

This set consists of all input output sets (x, q), such that „x‟ can produce „q‟. 
This production function can also be represented using a technical 
transformation function. The functional relationship defined by the set, S, 
may be correspondingly defined in terms of the output set, P(x), which 
represents the set of all output vectors. The vector q can be produced by 
using the input vector, x.  In notational expression, the output set is defined 
by  

P (x) = {q: x can produce q} = {q : (x, q)  S} (2) 

The output sets are sometimes identified as production possibility sets 
associated with various input vectors x. Following O‟Donnell and Coelli 
(2005) and Fare and Primont (1995), the production technology can be 
assumed to satisfy a standard set of axioms including convexity, strong 
disposability, closedness and boundedness.  

This production relation can also be explained in terms of the output distance 
function: 

D(x, q) = min { : > 0, (q/)  S} (3) 

Some simple properties of D(x, q), derived from the axioms on the 
technology set as listed in Fare, Grosskopf and Lovell (1985) and Coelli et al. 
(2005), can be specified: i. D(x, 0) = 0 for all non-negative x; ii. D(x, q) is non-
decreasing in q and non-increasing in x; iii. D(x, q) is linearly homogeneous 
in q; iv. D(x, q) is quasi-convex in x and convex in q; v. If q belongs to the 

production possibility set of x (i.e., q  P(x)), then D(x, q) ≤ 1; and vi.  
Distance is equal to unity (i.e., D(x, q) = 1) if q belongs to the frontier of the 
production possibility set. 
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The distance measure D(x, q) is “the inverse of the factor by which the 
production of all output quantities could be increased while still remaining 
within the feasible production set, for the given input level” (O‟Donnell and 
Coelli, 2005, p 497). The distance function measure is therefore equivalent to 
a Farrell-type output-oriented measure of technical efficiency. 

The Stochastic Distance Function Model  

Most recent studies applying the distance function approach have made use 
of the translog form because imposing linear homogeneity in output is 
impossible for the other flexible functional forms (Pascoe et al, 2007; Irz and 
Thirtle, 2005; Paul and Nehring, 2005; O‟Donnell and Coelli, 2005).  
Following these studies, the distance function model in this study is specified 
by using a translog functional form.  

The translog output distance function for M outputs and P inputs can be 
specified as:  
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where the ao, am, amn, bp, bpj, and gpm are unknown parameters and ln 
represents the natural logarithm. From Euler‟s theorem the homogeneity of 
degree one in outputs implies: 
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The symmetry restrictions require amn = anm and bpj = bjp for all m, n, j and p. 

Following Lovell et al. (1994), we impose the homogeneity constraint in the 
model.9 “Substituting these constraints into the distance function is equivalent 
to normalising by one of the outputs” (O‟Donnell and Coelli, 2005; 499). If 
output M is chosen to normalise, Equation (4) becomes: 

                                                 

9
 Most of the stochastic distance function models have imposed conditions of homogeneity and monotonicity (i.e., the non-

increasing/decreasing properties). 
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where *

mq =qm/qM. Equation (7) can be written in more compact form as 

ln(D/qM) = TL (x, q/qM,), (8) 

or 

ln(D)-ln(qM) = TL(x, q/qM,) (9) 

where TL (.) represents to the translog function and  is the vectors of a, b 
and g parameters. 

Rewriting the equation by substituting –ln(D) = –u as a one sided error term, 
captures the effects of inefficiency 

-lnqM = TL(x, q/qM,) –u (10) 

A symmetric error term, v, can be added in this model to address the effects 
of data noise. Then the translog model is 

-ln qM = TL(x, q/qM,)-u+ v (11) 

The parameters of this model can be estimated using maximum likelihood 
assuming that „u’ is a non-positive random variable independently distributed 

as truncations at zero of ),0( 2

uN  and „ν‟ is an independently and identically 

distributed random variable which is ),0( 2

vN  . Equation (11) can equivalently 

be specified as  

ln qM = TL(x, q/qM, ) - u+ v (12) 

This translog stochastic distance function model is in a normal stochastic 
frontier form with a two-part error term. As in the ordinary stochastic frontier 
model, the „u‟ in this model is the deviation from the frontier and „v‟ is a 
random error.  

The translog distance can be written as: 

ln(
*

Mq ) = TL(x, q/qM, )+ v   (13) 

Equation (5.12) may be rewritten using equation (13)  

 ln qM = ln
*

Mq -u (14) 
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or 

 )ln(
*

M

M

q

q
= (-u ) (15) 

This illustrates that the technical efficiency (TE) of a farm is the ratio of its 
mean production to the corresponding mean production if the farm utilised its 
levels of inputs most efficiently (Battese and Coelli, 1988), i.e.: 

TE = 
*

M

M

q

q
= exp (-u) (16) 

This takes values between 0 and 1, with TE = 1 indicating that the farm is 

fully efficient. To sum up, the difference between qM and *

Mq  is embedded in 

u. If u = 0, then qM equals to *

Mq  implying that the production unit lies on the 

frontier. In this condition, the farm is technically efficient. If u > 0, the level of 
the farm‟s production lies somewhere below the frontier, implying that the 
farm is technically inefficient. 

The technical inefficiency distribution parameter, „u‟ can be a function of 
various operational and farm-specific variables hypothesised as follows 





8

1

0

p

ipipi wzu 
 (17) 

where zi is a 1×p vector of various farm specific variables which may 
influence efficiency of a farm, δ is a set of parameters to be estimated and 
wi’s are the random variables defined by the truncation of the normal 

distribution with mean 0 and variance
2

u , such that the point of truncation is 

-ziδ i.e., wi ≥ - ziδ. These assumptions are consistent with ui being a non-

negative truncation of the N (ziδ,
2

u ) distribution (Battese and Coelli, 1995).  

Equations 13 and 17 are simultaneously estimated by maximum likelihood 
approach running Frontier 4.1 (Coelli, 1996).  

Results and Discussion  

Test of the Model Specification 

Two hypotheses have been tested with regard to the model specification. 
The first is a technical inefficiency test, with null hypothesis Ho: γ = 0 and the 
alternative hypothesis H1 : γ > 0. When the null hypothesis is not rejected, 
the result implies that the SDF frontier is rejected in favour of a standard 
linear model with normal error, implying that the „u‟ term should be removed 
from the model. If the null hypothesis is rejected, it implies that inefficiency 
exists. 
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As discussed earlier, if the model has been estimated using maximum 
likelihood, the hypothesis for inefficiency effects can be tested using Wald, 
LM and LR tests. However, because of the one-sided nature of the 
alternative hypothesis, these tests are difficult to interpret. Moreover, they do 
not always have the asymptotic chi-square distributions. Coelli (1995) shows 
that the LR test statistic is asymptotically distributed as a mixture of chi-
square distributions. The test statistic in this model is:  

LR = -2[-1913.44+1823.80] = 179.27 (18) 

This test statistic exceeds the 5% critical value )2(2

95..0 = 5.138. As the test 

has an asymptotic distribution, the critical value is taken from Table (1) in 
Kodde and Palm (1986). This value is smaller than the 5% critical value 

)2(2

95.0 5.99 that has been used by several authors including Battese and 

Coelli (1988).  On this basis we reject the null hypothesis of no inefficiency 
effects. The test implies that inefficiency exists in the production system and 
that specification of the SDF model is justified. 

The second hypothesis tested is the choice of the functional form, Cobb-
Douglas vs. translog. The null hypothesis that the model is Cobb-Douglas is 
imposed as amn=bpj=gpm =0 in equation 7. Testing the Cobb-Douglas model 

versus the translog, the generalised likelihood-ratio test statistic () is found 
as follows: 

λ =  -2[-1965.56 + 1823.59] = 283.94 (19) 

This value is greater than 38.93, the 99% critical value for χ2 distribution with 
23 degrees of freedom. The null hypothesis is rejected, implying that the 
translog frontier is preferred and captures the production behaviour in 
Nepalese agriculture.  

In the stochastic regression results the parameters, 2 = 2
v + 2

u  and γ = 2
u / 2  

represent the variances of the random variables vi and ui. The γ parameter is 
estimated to be 0.96 with standard error 0.014, and is statistically significant. 
It indicates that 96% of the variation in the composite error term is due to the 
inefficiency component. This implies that the random component of the 
inefficiency effects contributes significantly to agricultural production 
analysis.   

Production Elasticity 

In the output distance function model, each of the first order output 
elasticities with respect to input provide the specific productive contribution to 
total output. Such elasticities represent the returns to or output contributions 
from Xk changes, similar to output elasticities from production function 
estimation. The first-order elasticities of the translog distance-function model 
can also be decomposed into second-order effects to reflect input or output 
composition changes as scale expands (Paul and Nehring, 2005). These 
measures present further insights into the production systems. The second-
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order elasticities provide production complementarities or substitutions 
among the variables. A negative sign on the elasticity implies a substitute, 
whereas a positive sign reflects a complement.  

In the output translog distance function, the partial derivative of the output 
with respect to the mth output provides the ratio of the shadow prices of qM 

and qm. It reflects the slope of the production possibility curve or the marginal 
rate of transformation between qM and qm. 

The one sided error term, u, which is the deviation of a particular observation 
from the estimated frontier, provides the level of technical inefficiency. The 
inefficiency measures provide the percentages by which production could be 
increased, or input use reduced, to reach the production frontier. 

An output oriented translog distance function can be said to be well behaved 
if the function is monotonically increasing and concave in input quantities 
(Kumbhakar, 1994). Monotonicity implies positive elasticities of inputs within 
the data range. The complete regression results of the output oriented 
distance function model across the entire sample are reported in Appendix 1.  
All input elasticities with respect to output are positive and highly significant; 
thus, the model demonstrates a well behaved production technology. 

The signs of the first order output coefficients are negative and statistically 
significant. The second order output elasticities have correct (negative) 
signs, indicating that the transformation curve has a concave shape.  The 
cross (with the exception of q3×q4) and squared output terms are significant 
across specifications, and many cross-input terms are also significant. The 
result thus indicates the possibility of substitution among output variables.   

As expected, the estimated first order output elasticities for all conventional 
(Xs) inputs have correct (positive) signs and all elasticities are statistically 
significant at the 1% level. The positive signs of these elasticities indicate 
that farms can increase output by using more of these inputs. In output 
oriented translog distance function the production elasticities indicate how 
overall output changes with the variation in an individual input, keeping other 
input and output ratios constant, which is similar to output elasticities in 
production function estimation (Paul and Nehring, 2005). The elasticity of 
irrigated land (0.2) indicates that a 1% rise in irrigated land would increase 
overall output by 0.2%. In other words, it seems possible to increase output 
by increasing irrigated land and maintaining the existing levels of other 
inputs. Similarly, other production elasticities imply that increases in these 
inputs will also increase output.  

Irrigated land is found to have the highest elasticity (0.20) followed by labour 
(0.18), rain-fed land (0.16), capital share (0.15), and seeds and fertilisers 
(0.07). The high elasticity of the irrigated land indicates that irrigation is the 
most important input determining yields in Nepalese agriculture followed by 
human labour. The elasticity of uplands or rain-fed lands (0.16) suggests that 
they are no less important if they are utilised properly. In the same way, 
increases in the amount of capital, high quality seeds, fertilisers and other 



 13 

expenses can increase total output. The estimated elasticity for other 
expenditures (0.03) is relatively small but is highly significant, implying that 
an increase in other expenses also contributes somewhat to total output. The 
distance function results also show four squared-input terms to be significant 
and two to be insignificant.  

Most of the cross q–X terms (17 out of 24) are found to be insignificant.The 
positive sign of the cross product effect indicates that these variables are 
complementary. This means that if the value of one variable is increased, it 
also increases the impact of another variable on total output. The results of 
the model show that the cross products between variables x1 and x3 and also 
x2 and x6 are positive and statistically significant. The cross products 
between x1 and x4; x3 and x4; and, x3 and x6 are also positive but not 
statistically significant. The rest of the cross products are negative and none 
of them are statistically different from zero. This indicates that none of these 
variables are substitutes. 

Returns to Scale 

The sum of first-order input elasticities measures distance function-based 
scale economy. The sum measures the percentage change in output if all 
inputs were changed proportionally. If this estimate is equal to 1, it implies 
constant returns to scale.10 This means doubling the inputs would double the 
output. The sum of the first order input elasticities in this model is equal to 
0.78, i. e., less than 1.11 This illustrates the existence of decreasing returns to 
scale at the mean. Imposing the restriction that the sum of output elasticities 
of all inputs be equal to 1, we can test the hypothesis of constant returns to 
scale:  

2.47119
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10.784044
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Se
t   (20) 

As the absolute value of the computed t-statistic 2.47 is greater than the 
critical t-value at the 5% level of significance, we reject the null hypothesis of 
constant returns to scale. The rejection of the null hypothesis is the indication 
of decreasing returns to scale prevailing in Nepalese agriculture. This 
suggests that productivity gains could be achieved by reducing the size of 
the farm (Gilligan, 1998). Thus, reducing farm size by breaking up large 
farms could lead to increased aggregate productivity. 

                                                 

10
 The constant returns to scale assumption in the translog stochastic production frontier impose a number of linear restrictions 

in the parameters as follows: β1+ β2 + β3+ β4+ β5+ β6 =1, 2β11+ β12+ β13+ β14+β15+β16=0, β12+2β22+β23+β24+β25+β26=0, 

β13+2β23+2β33+β34+β35+β36=0, β14+2β24+2β34+2β44+β45+β46=0, β15+2β25+2β35+β45+2β55+ β56=0, β16+2β26+2 β36+β46+β56+ 
2β66=0 (for mathematical details, see Boisvert, 1982). 

Note however that to simplify the examination of the results, the input data (and farm specific variable as well as output data) 

was normalised by dividing throughout by the mean of each variable such that the sum of each variable was equal to zero. 
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Technical Efficiency  

As discussed earlier, the technical efficiency of the farm is the ratio of its 
mean production to the corresponding mean production if the farm utilised its 
levels of inputs efficiently. The technical efficiency for each farm can be 
defined as TE = exp(ui), where exp denotes the exponential operator. The 
estimated technical efficiency scores range widely from 0.07 to 0.93, with a 
mean efficiency score of 0.73. This indicates that a high degree of technical 
inefficiency is present relative to the best performing farms. It follows that a 
large proportion of farms operate far from the efficient frontier, implying a 
substantial scope for improving productivity using the existing level of inputs 
and resources efficiently.  

The estimated average efficiency score 0.73 indicates that typical Nepalese 
farms can increase agricultural production by 27% adopting the technology 
and the techniques used by the “best practice” farms. Alternatively, on 
average, there is the potential to achieve the existing level of output by 
reducing 27% of their inputs. The frequency distribution of the estimated 
technical efficiency scores is reported in Table 2 by farm size classification.  

The last two columns of Table 2 show the overall (national) frequency 
distribution. Only 1.32% of farms had an efficiency index of more than 90%, 
and 16.49% of farms were operating in the less than 60% technical efficiency 
range. The highest relative frequency of the technical efficiency index is 
found in the 81-90% range, followed by 71-80% and 61-70% range.   

Technical Efficiency and Farm Size 

Relative land pressure may be the most important factor in explaining 
differences in technical efficiency between farm sizes. The average technical 
efficiency is highest in medium size farms (77%), followed by large (75%) 
and small (72%). This implies that on average, medium size farms are more 
efficient than large and small ones. This result cannot be far away from the 
general expectation. Presumably the observed high efficiency of medium 
farms is due to farmers having agriculture as their main occupation and 
allocating their resources more effectively, leading to higher farming 
intensity. 

Table 2 shows that 4.95% of large farms were operating at a technical 
efficiency of more than 90%, followed by medium 1.52% and small 0.82%. 
The frequency of farms operating in the less than 50% range of technical 
efficiency was 10.41%, 10.26%, and 15.32% in small, medium, and large 
size farm respectively. This latter result further confirms the high percentage 
of less efficient farm in the large farm size group. The estimated frequency 
distributions of the efficiencies are plotted in Figure 1.  
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The mean technical efficiency of 73% is consistent with other studies using 
cross section data.12  It is also similar to the average efficiency score 
calculated by Bravo-Ureta and Pinheiro (1993). They found the average 
efficiency score to be 70%, derived from 30 studies conducted by various 
authors in developing countries using the stochastic frontier and cross 
section data.   Similar results have been found for Nepal.13  

The difference in the average technical efficiencies in different farm sizes 
was tested using ANOVA with a one-way classification. The calculated F-
ratio 25.597 is greater than the critical value of 4.61, at a 1% level of 
significance. This shows strong evidence rejecting the null hypothesis of no 
difference in the average technical efficiency in different farm size groups. So 
that the average technical efficiency in different farm size groups is 
significantly different. The average medium size farm is 6.96% more efficient 
than an average small farm and 2.13% more efficient than an average large 
farm.  

It is worthwhile to briefly reconcile the result on returns to scale and the 
relationship between the mean technical efficiency and farm size. 
Theoretically, if farms are profit maximizers, the production function is 
concave and one should observe decreasing returns to scale (RTS). Farm 
size is often viewed as a determinant of inefficiency, and farm size is also 
related to RTS but inefficiency and RTS are not directly related to the 
econometric model specified in this study. In this study, RTS is measured at 
the mean, while technical efficiency and farm size are related counting how 
many farms fall in a specific TE range. To look at the exact relationship 
between RTS and TE one would need to examine this for each farm, not at 
the mean.  

If the technology is concave the bigger size farms will have a smaller RTS, 
but they may not necessarily be more (or less) efficient. So, the mean RTS is 
not comparable with the mean efficiency of technical efficiency of any farm 
size group. Interpreted another way, if we think of mean RTS as the RTS for 
a farm that has its input levels the same as the mean, its inefficiency is 
unlikely to be the same as mean inefficiency.  

Technical Efficiency and Ecological Zone 

Nepalese agriculture is characterised by extreme heterogeneity because of 
its geographical diversity. Therefore, agro-climatic potential may be one of 

                                                 

12
 For example, Squires and Tabor (1991) found 68% technical efficiency in Indonesian peanuts, 70% off-Java rice and 69% in 

Java rice. Rawlins (1985) found 73% in Jamaican crops; Taylor and Shonkwiler (1986) found 71% in Brazilian farms; 

Kalirajan (1981) found 67% in Indian rice farms and Huang and Bagi (1984) found 89% in Indian farms. 
13

 Belbase and Grabowski (1985) using a deterministic method found mean technical efficiency (TE)  to be 80% in the 

Nuwakot district in Nepal (84% for rice and 67% for maize). Ali (1996), found average TE to be 75% for wheat farming in the 
Rupandehi district and Sharma, Pradhan, and Leung (2001) found 79% for rice farmers in the Chitwan district. Both of these 

studies used SFA model. Dhungana et al. (2004) using a DEA model found mean TE to be 76% for rice farmers in four villages 

of Agauli village development committee (VDC) of the Nawalparasi district. 
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the important factors explaining differences in agricultural output. Table 3 
reports the distribution of efficiency scores by ecological zones.   

The table shows that the average technical efficiency is similar between the 
Hill and the Mountain regions, but it is higher in Terai. The higher average 
efficiency in Terai is as expected. The Mountain and Hill regions are 
considered to be relatively unproductive because of geographical conditions.   

While testing the hypothesis of no difference in the technical efficiency in 
these three ecological regions, using the one-way ANOVA, the calculated F-
ratio is found to be 5.56. The critical value of F-ratio at 1% level of significant 
is 4.61, which is less than the calculated value. Hence, the hypothesis of 
equal technical efficiency is rejected, implying that the Terai region is more 
efficient than the Hill and Mountain regions.  

Sources of Inefficiency  

The empirical results clearly reveal that the inefficiency scores vary across 
farm size and ecological zone over time. Next we discuss some specific 
variables that affect such variations. 

The z1 to z8 variables as defined in Equation (17) are included as potential 
determinants of technical efficiency. The algebraic sign, value of estimated 
coefficients and level of significance are the elements that determine the 
level of inefficiency.  

The expected sign of the coefficient of owned land (z1) is negative on the 
inefficiency effects. Owned land is the proxy of access to credit. Larger 
parcels of owned land would lead to a greater ability to access credit, and 
subsequently to less inefficiency effects. The expected sign of the coefficient 
of value of land per hectare (z2) is negative. A higher value of land may 
reflect a higher quality of land that would be expected to be more efficient 
from the production point of view. 

The coefficient of extension service (z3) in the model is expected to be 
negative. Access to extension services in agriculture is likely to promote 
efficiency.  

The coefficient of the age of the family head (z4) could be positive or 
negative. Older farmers are likely to have more farming experience than the 
younger entrants and hence less inefficiency. However, it is also likely that 
they might be more conservative and thus less receptive to modern and 
newly introduced agricultural technology.   

The coefficient of the family head‟s education (z5) is expected to have a 
negative sign. This implies that farmers with more education respond more 
rapidly when new technology becomes available.  
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The sign of the coefficient for the access to road (z6) (the distance the farmer 
must travel from the residence to a vehicle passable road) is expected to 
have a positive impact on inefficiency.  

The dummy variables z7 (Mountain dummy) and z8 (Hill dummy) are 
expected to have positive effects because these regions are considered to 
be less conducive to high value agricultural production, as discussed above. 
These regions mainly rely on conventional farming practices that emphasise 
producing staple food crops.  

Table 4 reports the estimates of the technical inefficiency function (equation 
17). The dependent variable is technical inefficiency, not technical efficiency. 
Thus, a negative sign of the coefficient of an explanatory variable implies a 
reduction in technical inefficiency or a rise in technical efficiency. The results 
show that, with the exception of access to road, the signs of all variables are 
as expected.  Results will be further discussed below.  

If farms operate using different technologies depending on their size and 
ecological zone, the production frontier estimated using the stochastic 
frontier method would become farm-specific. In this context, the assumption 
of an equal slope coefficient across farms will no longer be valid and 
consequently, efficiency measurements might not be reliable. Therefore, it is 
desirable to compare the stochastic distance-function frontier results with the 
results derived from DEA to check the consistency and robustness of the 
model. In the following section, the DEA model is employed. 

V. Nonparametric Data Envelopment Analysis (DEA) 

The purpose of this section is to introduce the data envelopment analysis 
(DEA) model and compare the results with those derived from the stochastic 
distance function (SDF) model. Though the methodologies to estimate 
efficiency differ significantly, both methods define technical efficiency as the 
observed production relative to the corresponding potential, given the 
quantity of inputs used. The technical efficiency scores estimated from the 
output-oriented DEA frontiers are therefore comparable with the scores 
obtained from the SDF.  

In this section output oriented Constant Returns to Scale (CRS), as well as 
Variable Returns to Scale (VRS), and DEA frontiers are estimated using the 
same output and input variables and the same data set as in the SDF model.  

Consider the situation of 2,585 farms, each producing 4 different types of 
crops using 6 different inputs. The ith farm uses xki units of the kth input in the 
production of yri units of the rth crop. A separate linear programming problem 
is solved for each of the 2,585 farms in the sample. The output-based 
technical efficiency for the ith farm can be obtained by solving the following 
LP problem: 

ji ,
iMaximize



  (21) 
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where i is the proportional increase in outputs possible and λj the weight or 
intensity variable used to derive all possible linear combinations of sample 

observations. When the value of i in Equation (21) is 1,  λi = 1, and λj = 0 for 
j ≠ i, the ith farm lies on the frontier and is technically efficient. For the 

inefficient units, i > 1, λi = 0, and λj ≠ 0 for j ≠ i. The output based technical 
efficiency index of the ith farm (TEi) can be computed as follows: 

i
iTE



1
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Table 5 presents the results of the empirical estimates of the DEA model.  
The table shows frequency distribution and summary statistics for the 
technical efficiency scores in terms of variable returns to scale (VRS), 
constant returns to scale (CRS) and scale efficiency (SE).The estimated 
mean technical efficiencies for the sample households for the VRS and CRS 
DEA frontier are 0.48 and 0.47 respectively, whereas it was 0.73 for the 
SDF. The DEA results also verify that there is substantial productive 
inefficiency in Nepalese agriculture. Out of 2,585 households, 329 
households are fully efficient under the VRS model. However, in terms of the 
CRS model, only 244 households are fully efficient.  

The individual efficiency measures derived under the VRS DEA model are 
equal to or greater than those obtained from the CRS DEA model. To 
compute a measure of scale efficiency (SE) under DEA the following 
equation is used: 

VRS

CRS

TE

TE
SE   (23) 

The mean scale efficiency for the sample households is 0.98. Out of the 
2,585 households, 2,003 show constant returns to scale, 439 increasing 
returns to scale, and the remaining 143 show decreasing returns to scale. 
However, in terms of the SFA there are decreasing returns to scale 
prevailing in Nepalese agriculture in general.  
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VI. Comparison of TE Scores Derived from SDF and DEA  

A majority of studies have compared the technical efficiency results derived 
from SFA and DEA methods in agriculture14 These findings generally show 
that while the efficiency scores produced from each approach differ 
quantitatively, the ordinal efficiency ranking of farms obtained from the two 
approaches appear similar. Table 6 compares the technical efficiencies 
derived from SDF and DEA.  

Table 6 shows that technical efficiency scores estimated using the two 
methods vary greatly. The mean technical efficiencies estimated from the 
DEA models are lower than those estimated from the stochastic frontier. As 
can be seen, a majority of farm households have efficiency of more than 
70% in terms of SDF but the corresponding figure is very low in the DEA 
results. These results are not surprising because the DEA approach 
attributes any deviation of the data points from the frontier to inefficiency, 
whereas the SDF also accounts for a random error component.  

As compared to SDF measures, the DEA efficiency measures have a 
considerably higher variability. The variability of the DEA efficiency measure 
ranges from a minimum of 0.02 to a maximum of 1 whereas in SFA it ranges 
from 0.07 to 0.93. To examine the efficiency rankings between the two 
approaches, correlation coefficients between the technical efficiency 
rankings from the SDF and both CRS and VRS scale models of the DEA are 
computed and reported in Table 7. The statistical significance test confirms 
that all the correlation coefficients are positive and significant.  

As discussed above, the majority of studies found evidence that, using the 
same data set, estimated technical efficiency scores derived from the SFA 
approach are generally higher than those obtained from the DEA (Drake and 
Weyman-Jones, 1996; Ferrier and Lovell, 1990). However, analysing a 
sample of Guatemalan farmers, Kalaitzandonakes and Dunn (1995) reported 
a significantly higher level of mean technical efficiency under DEA than 
under the SFA. That contrasts sharply with this study and most other studies. 

VII. Factors Determining Inefficiency 

There are essentially two ways for estimating the farm specific attributes in 
explaining inefficiencies. The first is to include farm specific attributes in the 
efficiency model directly as has been done in the SDF model above. The 
other approach is to use a second stage regression model as applied in a 
number of studies including Kalirajan (1991), Sharma, Leung and Zaleski 
(1999), and Shafiq and Rehman (2000).  

                                                 

14
 Examples include, Ferrier and Lovell (1990); Kalaitzandonakes and Dunn (1995); Drake and Weyman-Jones (1996); 

Hjalmarsson et al. (1996), Sharma et al. (1997; 1999). 
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The second stage regression model is now used to determine the farm 
specific attributes in explaining efficiency in Nepalese agriculture. The 
empirical model assumed is as follows:   

eZy  *  (24) 

where *y  is a DEA efficiency index used as a dependent variable, z is the 

vector of independent variables related to farm specific attributes, β is the 
unknown parameter vector associated with the farm specific attributes, and e 
is an independently and normally distributed error term with zero mean and 
constant variance, σ2. 

As defined earlier in the case of the stochastic model, all z1 - z8 variables are 
potential determinants of technical efficiency. The expected signs of all 
variables were discussed earlier in section 4. Estimated parameters of 
equation (24), which are estimated by Tobit regression procedures available 
in LIMDEP 8.0 (Green, 2002), are reported in Table 8. The response variable 
in this model is technical efficiency (as opposed to technical inefficiency in 
the case of SDF model). The signs of the parameters are therefore opposite 
of the technical inefficiency model above. Thus, the signs are simply 
changed to make the results of both models consistent.  

Table 8 shows that the Tobit regression results are consistent with the SFA 
model. By and large, the same signs and relative values are found in both 
model estimations and hence have the same effects on technical efficiency 
(or inefficiency) of all regressors. With the exception of distance to road, the 
signs related to all other inefficiency (or efficiency) determinants are as 
expected. In both cases, owned land has a significantly positive effect on 
efficiency (or negative effect on inefficiency). The largest absolute value of 
owned land among the Tobit regression coefficients suggests that ownership 
of land might be the most important determinant of efficiency. As owned land 
is the proxy of access to agricultural credit, the positive effect on efficiency 
indicates that farmers with more owned land have more access to 
agricultural credit so that they are more efficient.  

In both models, the value of land, a proxy for land quality, has a significantly 
negative effect on inefficiency, as expected. This implies that households 
with a higher quality of land are more efficient than those having low quality 
land.   

The household head‟s age has a positive effect on efficiency in both models. 
However, the estimated coefficients are not significant in both models. 

The variable for extension service reflects the influence of the government 
extension programme. Both the SDF and the Tobit regressions give the 
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same result, namely that the extension dummy variable has positive effects 
on efficiency but it is not statistically significant in both cases.15 

Surprisingly, the result indicates that the farther from a road, the more 
efficient the farm.  This effect is not expected but it is significantly different 
from zero. The underlying reason behind this could be that higher quality 
(irrigated) farmlands are relatively far away from residential areas and town 
centres so that access to roads is not available. However, the small value of 
the coefficient in both models suggests that the impact of this variable is 
quite limited.  

As expected, the results of both regression models reveal positive 
relationships between the level of education of the household head and 
technical efficiency. This is also statistically significant in the DEA model 
(although not in the SDF model). It suggests that increasing investment in 
education may lead to better performance in the agricultural sector.  

As expected, the dummy variables for the Mountain and Hill regions have a 
negative effect on efficiency. This implies that the Terai (plain) region, taken 
as the base case, has a positive effect on efficiency.  

To sum up, farmers with owned land, more education, higher quality of land, 
and who live in the Terai region have a higher level of technical efficiency 
than the farmers not possessing those attributes. 

These results suggest that policy makers in Nepal need to understand that 
there is a high degree of inefficiency in the agricultural production systems. 
Where inefficient households are able to surplus some resources, they could 
be used to make additional income to enhance household welfare. For 
instance, surplus labour could be diverted to off-farm employment where an 
opportunity exists. Households could use the additional income to acquire 
new technologies including improved seeds, fertilizers, and new agricultural 
implements. Further, they could invest in land improvement. All this would 
lead to improved technical efficiency and thereby household welfare. 
Increasing household welfare is an effective way of alleviating poverty. 

The factors that significantly influence farmers‟ resource allocation decisions 
differ widely among individual farmers. The effectiveness of new policies 
designed to increase efficiency and productivity may depend largely on the 
extent to which such differences are recognised. In a broad sense, 
inefficiency should not be viewed as just a result of the differences in the use 
of input quantities. Institutional factors including extension systems, 

                                                 

15
 The evidence shows that in Nepal relatively few farmers receive extension services (WB, 2006). However, it is not clear 

whether this is a problem of lack of availability or whether the services do not meet the needs of farmers. Our regression results 
also reach the conclusion that extension services have no significant effect on efficiency. 
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education, research and general policies are also important. Efficiency 
enhancing policies must be flexible enough to accommodate these realities.  

VIII. Conclusions and Policy Implications  

The results show that the variation in output among agricultural farms in 
Nepal is due to differences in technical efficiency. Variations in amounts of 
production inputs have a significant influence on the level of production and 
efficiency across farm households. Results confirm that the level of 
inefficiency is also related to farm specific attributes. Owned land is the major 
determinant of inefficiency followed by land quality (value of land) and 
education.  

The results demonstrate that the level of technical efficiency among 
agricultural households differs significantly across size groups and across 
agro-ecological zones. Medium size farms achieve the highest technical 
efficiency in the Nepalese context. Decreasing returns to scale also suggest 
that productivity gains can be achieved by reducing the size of larger farms.  

Based on the findings, the following policy implications can be derived with 
regard to increasing efficiency so as to reduce poverty and promote equity. 

In view of the limited arable land and other resources, satisfying the 
increased demand for food through domestic production must come through 
improvements in productivity, from technological progress or increases in 
technical efficiency at the farm level. Technical progress relates to the 
development and adoption of modern technologies, whereas TE refers to the 
farmer‟s ability to achieve maximum output from a given set of inputs by 
using available productive technology efficiently. Given the existing 
production technology in Nepal, there is limited prospect of technical 
progress. In this context, the policy makers need to understand that an 
increase in technical efficiency is relatively cost effective and therefore 
government policies should be directed towards this.  

This study shows that given the present state of agricultural technology, 
farms have a potential for enhancing productivity by increased use of inputs. 
Irrigation is identified as the main factor for determining yields in agriculture. 
Therefore, government policy should give a high priority to increasing 
irrigation facilities. In the same way, government policy should facilitate the 
supply of and access to required capital, high quality seeds, fertilisers and 
other inputs for farmers.  

Access to agricultural credits, the quality of land and education are 
recognised as the most influential determinants of efficiency. These are also 
the shifting factors of the production frontier. Government policies should 
target increased access to credit for farmers through ownership of land along 
with enhancement of land quality and increases in the level of education, 
training and knowledge of farmers. These types of policies and practices 
could contribute to increased technical efficiency.   
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The findings reveal that the medium sized farm (i.e., between one and two 
hectares) is more efficient than large and small sized farms. This suggests 
maintaining medium farm size would be beneficial. Policies targeted at 
creating medium sized farms by breaking up large farms and the merger of 
small farms might have beneficial effects on efficiency, although this issue 
may need to be studied further. Access to land by the poor through 
redistributive land reform can increase productivity and promote efficiency.  

The existence of a high degree of technical inefficiency also suggests that 
farmers‟ resource allocation decisions differ widely among individual farmers. 
Farmers‟ interactions with each other should have some beneficial effect 
towards catching up on new technology. Producers‟ organisations can also 
improve efficiency in the delivery of government support services and 
empower them to get involved in many activities. 

The analysis clearly demonstrates that technical efficiency varies significantly 
across farm-size groups and ecological zones. The effectiveness of new 
policies designed to increase efficiency and productivity may depend largely 
on the extent to which such differences are recognised. Efficiency 
improvement policies should be flexible enough to accommodate these 
realities. For instance, younger and older household managers, educated 
and uneducated, with and without capital, with irrigated land and rain-fed 
land, might comprise sub groups with small, medium and large farms  
located in the Terai, Hill and Mountain ecological zones. Therefore, policies 
targeting separate groups, rather than „one size fits all‟, will be an effective 
approach to improve efficiency and productivity. In the same way, 
recognising farmers who are inefficient in using some resources (such as 
fertiliser, seeds and labour) would be useful in treating them separately for 
intervention purposes.  

The findings suggest that government efforts through agriculture extension 
programmes have failed to have a significant effect on technical efficiency. 
Government policies should facilitate the private sector to come forward and 
assist in diffusing modern technologies through extension and training, so 
that farmers can apply available agricultural technology more efficiently.  

Among the three geographical regions, the observed average inefficiency is 
higher in the Hill and Mountain regions. Government policies should be 
targeted to increasing TE in these areas by taking into account the varying 
circumstances that can be observed.   
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APPENDIX 1: STOCHASTIC DISTANCE FUNCTION RESULTS (FRONTIER 4.1)  

Variables Coefficient St. Err. t-ratio  Variables Coefficient St. Err. t-ratio 

Constant 1.001 0.031 32.131 x11 0.063 0.057 1.114 

Cereal Crops (q12) -0.561 0.011 -51.471 x22 0.036 0.015 2.465 

Pulses (q21) -0.121 0.009 -13.465 x33 0.055 0.013 4.223 

Cash Crops (q31) -0.182 0.009 -19.396 x44 0.035 0.008 4.493 

Other Crops (q41) -0.136 0.008 -17.644 x55 0.06 0.009 6.985 

DO1 -4.403 0.162 -27.112 x66 0.005 0.007 0.658 

DO2 -0.788 0.093 -8.431     

DO3 -1.437 0.104 -13.857 x1q1 -0.029 0.009 -3.235 

DO4 -1.244 0.082 -15.217 x2q1 0.016 0.004 3.739 

Cereal×Pulses (nm12) 0.009 0.002 3.701 x3q1 0.001 0.004 0.217 

Cereal×Cash (nm13) -0.005 0.002 -1.986 x4q1 -0.007 0.003 -2.842 

Cereal×Other (nm14) -0.002 0.002 -1.324 x5q1 <.001 0.002 0.242 

Pulses×Cash (mn23) 0.003 0.001 2.715 x6q1 -0.001 0.002 -0.662 

Pulses×Other (mn24) -0.004 0.001 -3.894     

Cash×Other (mn34) <.001 0.001 0.059 x1q2 0.012 0.009 1.325 

Cereal×Cereal (nm11) -0.002 0.003 -0.656 x2q2 -0.012 0.004 -2.903 

Pulses×Pulses (mn22) -0.008 0.003 -2.89 x3q2 -0.003 0.004 -0.699 

Cash×Cash (mn33) 0.001 0.002 0.538 x4q2 -0.001 0.002 -0.576 

Other×Other (mn44) 0.006 0.002 3.407 x5q2 -0.001 0.001 -0.684 

Labour (x1) 0.177 0.023 7.745 x6q2 0.002 0.002 1.41 

Irrigated Land (x2) 0.202 0.015 13.572 x1q3 0.007 0.007 0.898 

Rainfed Land ( x3) 0.156 0.013 12.004 x2q3 0.002 0.003 0.542 

Capital Service (x4) 0.148 0.011 13.682 x3q3 0.002 0.003 0.543 

Purchased Inputs (x5) 0.072 0.014 5.229 x4q3 0.004 0.002 2.06 

Other Costs (x6) 0.029 0.012 2.405 x5q3 0.001 0.001 1.09 

DI1 -0.591 0.032 -18.302 x6q3 -0.003 0.001 -1.892 

DI2 -0.274 0.033 -8.263 x1q4 0.01 0.005 1.892 

DI3 -0.082 0.201 -0.408 x2q4 -0.006 0.003 -2.167 

DI4 -0.401 0.173 -2.325 x3q4 <.001 0.002 0.014 

DI5 -0.002 0.162 -0.012 x4q4 0.004 0.002 2.502 

x1x2 -0.008 0.021 -0.357 x5q4 -0.001 0.001 -0.811 

x1x3 -0.035 0.02 -1.744 x6q4 0.002 0.001 1.623 

x1x4 0.02 0.012 1.715     

x1x5 -0.014 0.008 -1.749 Constant (Z0) -1.07 0.71 -1.51 

x1x6 -0.015 0.008 -1.928 Owned Land (Z1) -0.6 0.21 -2.92 

x2x3 0.028 0.009 3.072 Value of Land (Z2) -0.28 0.09 -3.19 

x2x4 -0.008 0.006 -1.339 Extension Service (Z3.) -0.98 0.6 -1.63 

x2x5 -0.002 0.004 -0.694 Age of HH (Z4) -0.09 0.11 -0.81 

x2x6 0.008 0.004 2.073 Education of HH (Z5) -0.04 0.05 -0.68 

x3x4 <.001 0.005 0 Access to Road (Z6) -0.09 0.04 -2.45 

x3x5 -0.006 0.003 -1.81 Mountain Dummy (Z7) 0.16 0.12 1.36 

x3x6 <.001 0.003 0 Hill Dummy (Z8) 0.15 0.08 2.04 

x4x5 -0.004 0.002 -1.809 sigma-squared 3.276 1.073 3.052 

x4x6 -0.002 0.002 -0.842 Gamma 0.962 0.014 67.99 
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Table 1: Descriptive Statistics of Variables 

Variables Unit Mean Std. Dev. Minimum Maximum 

Value of Cereal Crops NR 17,532.2 20,520.3 0 499,728 

Value of Pulses NR 3,503.08 8,116.14 0 199,026.3 

Value of Cash Crops NR 5,071.42 14,373.4 0 350,429.8 

Value of Others Crops NR 12,642.6 47,084.6 0 1312,800 

Labour (X1) Hours 7,399.22 3,769.42 614 50,053.01 

Irrigated Land (X2) Hectares 0.44 0.81 0 13 

Rain-fed Land (X3) Hectares 0.44 0.64 0 8.8 

Value of Capital Share (X4) NR 5,077.1 8,242.52 0 148,040 

Cost of Seeds Plus Fer. (X5) NR 1,662.45 3,558.66 0 92,800 

Other Costs (X6) NR 1,920.44 4,951.34 0 109,200 

Owned Land (Z1) Hectares 0.76 0.96 0.01 18.62 

Value of Land Per Hec. (Z2) NR 1,041,025 2,864,097 10,811.5 44,941,927 

Age of Family Head (Z4) Years 46.02 13.97 16 91 

H.H. Education Level (Z5) Years 3.46 3.72 1 17 

Access to Road (Z6) Hours 7.42 14.33 0 120 

Source: NLSS dataset. 
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Table 2: Distribution of Technical Efficiency (TE) by Farm Size 

TE %  Small  %  Medium  % Large  %  All % 

< 10 4 0.22 0 0 2 0.45 6 0.19 

11-20 22 1.2 1 0.19 1 0.45 24 0.93 

21-30 26 1.42 6 1.14 2 0.9 34 1.32 

31-40 51 2.78 2 0.38 3 1.35 56 2.17 

41-50 88 4.79 16 3.04 13 5.86 117 4.53 

51-60 147 8 29 5.51 14 6.31 190 7.35 

61-70 280 15.24 63 11.98 31 13.96 374 14.51 

71-80 586 31.9 152 28.9 50 22.52 788 30.48 

81-90 617 33.64 249 47.34 96 43.24 962 37.21 

>90 15 0.82 8 1.52 11 4.95 34 1.32 

Total 
Farm  

1836 100 526 100 223 100 2585 100 

Ave. TE 0.72  0.77  0.75  0.73  
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Table 3: Distribution of Technical Efficiency by Ecological Zone 

TE (%)   Mountain % Hill % Terai % All % 

< 10 0 0.00 3 0.24 2 0.21 5 0.19 

10-20 3 0.82 9 0.71 12 1.25 24 0.93 

21-30 7 1.91 17 1.35 10 1.04 34 1.32 

31-40 9 2.45 24 1.90 23 2.40 56 2.17 

41-50 19 5.18 68 5.39 30 3.13 117 4.53 

51-60 28 7.63 104 8.25 58 6.06 190 7.35 

61-70 56 15.26 179 14.20 140 14.63 375 14.51 

71-80 108 29.43 425 33.70 255 26.65 788 30.48 

81-90 137 37.33 418 33.15 407 42.53 962 37.21 

>91 0 0.00 14 1.11 20 2.09 34 1.32 

Total 367 100 1261 100 957 100 2585 100 

Ave.  TE 0.7214   0.7216   0.7419   0.7291   
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Table 4: Factors Affecting Technical Inefficiencies 

Variables Coefficient 
Std- 
error t-ratio 

Constant (Z0) -1.07 0.71 -1.51 

Owned Land (Z1) -0.6 0.21 -2.92 

Value of Land (Z2) -0.28 0.09 -3.19 

Extension Service (Z3.) -0.98 0.6 -1.63 

Age of HH (Z4) -0.09 0.11 -0.81 

Education of HH (Z5) -0.04 0.05 -0.68 

Access to Road (Z6) -0.09 0.04 -2.45 

Mountain Dummy (Z7) 0.16 0.12 1.36 

Hill Dummy (Z8) 0.15 0.08 2.04 

sigma-squared 3.276 1.073 3.052 

Gamma 0.962 0.014 67.991 
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Table 5: Technical Efficiency Scores from DEA  

TE Percent  CRS % VRS % SE 

0- 10 64 2.48 64 2.48 0 

10-20 262 10.14 261 10.1 0 

20-30 542 20.97 462 17.87 0 

30-40 423 16.36 488 18.88 0 

40-50 371 14.35 351 13.58 3 

50-60 265 10.25 250 9.67 8 

60-70 176 6.81 158 6.11 14 

70-80 101 3.91 101 3.91 45 

80-90 77 2.98 72 2.79 116 

90-99 61 2.36 50 1.93 396 

1 243 9.4 328 12.69 2003 

Total 2585 100 2585 100 2585 

Mean TE 0.47  0.48  0.98 

Minimum 0.02  0.02  0.45 

Maximum 1  1  1 

Standard 
Deviation 

0.26  0.27  0.06 
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Table 6: Comparing SDF and DEA Results 

TE (%) SDF % CRS % VRS % 

0- 10 5 0.19 64 2.48 64 2.48 

10-20 24 0.93 262 10.14 261 10.10 

20-30 34 1.32 542 20.97 462 17.87 

30-40 56 2.17 423 16.36 488 18.88 

40-50 117 4.53 371 14.35 351 13.58 

50-60 190 7.35 265 10.25 250 9.67 

60-70 375 14.51 176 6.81 158 6.11 

70-80 788 30.48 101 3.91 101 3.91 

80-90 962 37.21 77 2.98 72 2.79 

90-99 34 1.32 61 2.36 50 1.93 

1 0 0.00 243 9.40 328 12.69 

Total 2585 100 2585 100 2585 100 

Mean TE 0.73  0.47  0.48  

Minimum 0.07  0.02  0.02  

Maximum 0.93  1.00  1.00  

Standard 
Deviation 

0.15  0.26  0.27  
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Table 7: Correlation Matrix for TE Rankings 

 SDF CRS VRS 

SDF 1   

CRS 0.39347 1  

VRS 0.40048 0.98386 1 
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Table 8: Estimates of Determinants of Technical Inefficiency (First 
Stage and Second Stage) Models 

Variable  SDF Model Tobit Model Mean X 

 Coef. St. Er. t-Ratio Coef. St. Er. t_Ratio P  

Z0 -1.07 0.71 -1.51 0.449 0.022 -20.457 <0.001  

Z1 (Owned Land) -0.6 0.21 -2.92 0.014 0.006 -2.395 0.017 0.753 

Z2 (Value of Land) -0.28 0.09 -3.19 0.001 <0.001 -5.295 <0.001 10.740 

Z3 (Extension) -0.98 0.60 -1.63 0.009 0.020 -0.462 0.644 0.079 

Z4 (Age) -0.09 0.11 -0.81 <0.001 <0.001 -1.097 0.272 46.094 

Z5 (Education) -0.04 0.05 -0.68 0.005 0.002 -2.920 0.004 3.456 

Z6 (Road) -0.09 0.04 -2.45 0.002 <0.001 -5.792 <0.001 7.499 

Z7 (Mountain) 0.16 0.12 1.36 -0.064 0.019 3.41 0.001 0.142 

Z8 (Hill) 0.15 0.08 2.04 -0.064 0.012 5.354 <0.001 0.488 

sigma-squared 3.276 1.073 3.052      

Gamma 0.962 0.014 67.991      

Sigma    0.268 0.004 71.903 <0.001  
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Graph 1: Frequency Distribution of Efficiency  

 


