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Modeling the Norwegian Sea ‘pelagic complex’. An

application of the Ensemble Kalman Filter
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Bergen, Norway, nilsarne.ekerhovd@snf.no,
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Abstract

We have estimated the parameters of a modified logistic ecosystem model of the pelagic fish

stocks in the Norwegian Sea with the Ensemble Kalman Filter. Our model only contains

four parameters. The model appear to capture much of the dynamics in the system as

well as the interactions between the different species. The interactions are competitive,

mutually destructive interactions, where Norwegian Spring Spawning herring, Northeast

Atlantic blue whiting and Northeast Atlantic mackerel prey upon the same food source(s),

thus, limited by a common ‘carrying capacity’. Increase in one species’ biomass leads to

reduced growth for all three species. While the main, dynamic features seems to be picked

up, and most observations are within the forecast range, the forecasts are often too small,

and a deterministic forecast has less or no downward bias.

Keywords: Ecosystem Management, Pelagic Fisheries, Norwegian Sea, Ensemble

Kalman Filter, Bioeconomics

1

SNF Working Paper No. 07/13



Introduction

The rationale for developing a bioeconomic multispecies model for mackerel, herring

and blue whiting is to describe the behavior of the harvestable populations for use

in theoretical analysis. The bioeconomic modeling involves identifying the patterns of

changes in the biomass of fish over time as a function of additions to the stock due to

natural growth and deductions from the stock due to natural mortality and harvesting.

In addition, multi-species models must take into account inter-specific effects between

the fish populations. During the period 2006-2009 there has been a strong build up

of biomass of planktivorious fish (herring, mackerel and blue whiting1) in the Norwegian

Sea. The negative relationships between length at age and stock biomass, the pronounced

reduction in zooplankton abundance witnessed in the Norwegian Sea in recent years, and

the expansion in spatial distribution of fish indicate that the biomass of planktivours

fish in the area has been above the carrying capacity (Huse et al. 2012). All stocks

showed sign of density-dependent length growth, whereas for herring and blue whiting

there were also significant effects of interspecific competition. Huse et al.’s results support

the hypothesis that the planktivorous fish populations feeding in the Norwegian Sea have

interactions that negatively affect individual growth, mediated through depletion of their

common zooplankton resource. It will be important to include these findings in the future

ecosystem based management of the Norwegian Sea.

The Northeast Atlantic sustains a number of pelagic fish stocks, the most important

of which are Norwegian Spring Spawning (NSS) herring, Northeast Atlantic blue whiting

and Northeast Atlantic mackerel (Skjoldal et al. 2004). All these stocks are classified as

straddling stocks in the sense that they not only cross boundaries between the EEZs of

coastal states, but also traverse the high seas areas between those boundaries (Bjørndal

and Munro 2003). NSS herring mainly inhabit Norwegian waters throughout the life cycle,

but can migrate into Russian waters during the juvenile phase, and into Faroese, Icelandic
1These zooplankton feeding stocks have substantial spatial and dietary overlap, and are often

collectively referred to as the ‘pelagic complex’ in the Norwegian Sea.
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and international waters as adults during the feeding period in the summer (Holst et al.

2004). The feeding migration pattern, especially for large herring, has changed several

times over the last 60 years (Holst et al. 2002; Utne et al. 2012), varying with the size

of spawning stock biomass and possibly ocean conditions as well. Mackerel spend most

of the year in EU waters, but a large part of the stock migrates into the eastern part of

the Norwegian Sea and the North Sea from June to October (Belikov et al. 1998; Iversen

2004). In recent years Icelandic waters have also been inhabited by mackerel (Nøttestad

and Jacobsen 2009) possibly due to changing water temperatures. Blue whiting is mainly

found in the Norwegian Sea throughout the year, but spawns west of the British Isles in

February-May (Bailey 1982). The stock is located in Norwegian, Icelandic, Faroese and

EU waters, but the large scale distribution pattern varies and is related to total stock

size and water temperature (Utne et al. 2012).

The migratory patterns of these stocks have undoubtedly made it more difficult to

attain and to uphold international agreements on catch quotas. While agreements on

the less migratory demersal stocks (cod and haddock, for example) between Russia and

Norway have remained unchanged since the early 1980s, the agreements on the pelagic

stocks have sometimes broken down or taken a long time to establish. After lifting the

moratorium on North Sea herring in 1981 it took several years to establish a lasting

sharing agreement between Norway and the EU. An agreement on the NSS herring was

established in 1996, several years after its recovery, but it broke down in the period 2003-

2006 because of disagreement over allocation of national quotas. This shows that the

agreement lacked time consistency which is a fundamental condition for a cooperative

agreement to be stable over time. An agreement on blue whiting was reached in 2005,

after many years of intensive exploitation where total catches in some years were four

fold the recommended ICES quota (Bjørndal 2009).

The relevance of our research is clearly emphasized by the recent mackerel dispute

between Norway and EU on one side and Iceland and the Faroe Islands on the other, the

so-called mackerel war (Hannesson 2012). There has for several years been an unsolved
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dispute between these nations about the size of their respective quotas. Norway and EU

had originally an agreement with 10-years duration about the size and distribution of

mackerel quotas. Then the mackerel started to change its migration pattern such that a

larger share of the stock entered Iceland’s and the Faroe Islands’ economic zones. This

caused these two countries to multiply their previous harvest of mackerel. Norway has

responded by refusing landings of mackerel from Iceland and the Faroe Islands in Norway,

and EU has recently warned that they may do the same. The present threat is that if

this dispute is not solved fairly soon and sustainable harvesting is resumed, the increased

harvest pressure on the mackerel may cause the whole stock to collapse implying severe

problems both for fishermen and the pelagic fishing industry in all countries involved for

a long period. The scientific advice for total harvest in 2011 was 650 000 tonnes whereas

actual harvest was about one million tonnes. So far no agreement has been reached. Even

if an agreement is reached, it may be interesting to compare it with an optimal agreement

based on bioeconomic modeling under various scenarios, and therefore our line of research

is of interest no matter what actually happens. The so-called mackerel war is a classic

example of the commons problem for which the relevance and importance of bioeconomic

modeling and analysis is well established.

Method

In order to model the pelagic fisheries in the Norwegian Seas, simplifications are necessary.

We resort to a aggregated biomass model which permits analysis of optimal agreements

and quota decisions, but still maintain species interactions and stock dynamics. To make

the model as representative as possible, we apply the ensemble Kalman filter, a data

assimiliation method for chaotic, nonlinear models, to fit the model to aggregated data.

The method allows for adaptive parameters which make it possible for relatively simple

models to capture the complex dynamics observed in the data. The method also extends

to forecasting which can be useful in the analysis. An important part of the method is
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the quantification of model uncertainty which could be important for management and

in negotiations.

We briefly spell out the central parts of the ensemble Kalman filter methodology; see

Evensen (2003) for a comprehensive treatment. The continuous time state-space model

is written

dx = f(x)dt+ σdB (1)

d = M(x) + v (2)

The state equation, equation (1), describes the time evolution of the state vector x.

The sum of the drift term f(x)dt and the stochastic diffusion term σdB amounts to an

incremental change dx in the state vector. When x is an aggregated biomass vector,

f(x) is the multi-dimensional growth function. The stochastic, Brownian increments

dB are independent, identical, and normal distributed with mean zero and variance dt.

The measurement equation, equation (2), relates the state vector to the observations d

via the measurement functional M(x). When the state vector is directly observed, the

measurement functional is the identity operator. v is a normal distributed error term

with mean zero and covariance R.

The ensemble Kalman filter is a generalization of the classical Kalman filter, and the

overall structure of the procedures are similar. The state vector is integrated forward

in time according to the state equation until measurements become available. In the

classical Kalman filter, the model is linear, and integration is straight forward; in the

extended Kalman filter, the model is locally linearized; in the ensemble Kalman filter, a

Markov Chain Monte Carlo approach is invoked and the full, nonlinear model is used.

Measurements are used to update the state vector via the Kalman gain matrix Ke.

Integration then continues. Parameter estimation is facilitated by increasing the state-

space to include parameter dimensions. Thus, when the state vector is updated with

measurements, the state equation is also updated if the drift or diffusion terms contain
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unknown parameters. Parameters are treated as unobserved, but constant model states;

they have zero drift and diffusion terms.

The forward integration of the state vector is tantamount to solving the Fokker-Planck

equation for the time evolution of the probability density. To solve the Fokker-Planck

equation is inconvenient in practical settings. The ensemble Kalman filter approximates

the solution with a Markov Chain Monte Carlo method. An ensemble of states, a

cloud of points in the state-space, represents the probability density function and each,

individual member is integrated in time according to the state equation. Errors are

simulated. The integrated ensemble represents a forecast of the probability density. The

only approximation is the limited number of ensemble members (Evensen 2009).

The state vector is updated with measurements in a linear weighting between the

forecasted (integrated) state vector and the measurements. We write xf for the forecast

state vector and Xa for the updated state vector (in the technical literature, the update

operation is called the analysis). The weighting is given by the ensemble-based Kalman

gain Ke. In order to maintain the proper covariance structure in the state ensemble, it

is necessary to perturb the observations to account for observation uncertainty (Burgers

et al. 1998). In practice, the observations are represented by an ensemble D which has as

many members as the state ensemble X. The observation ensemble has the observation

d as its mean, and its covariance, written Re, represents the observation uncertainty. For

ensemble member i, the update is written

Xa(i) = Xf (i) +Ke

(
D(i) −MXf (i)

)
(3)

The ensemble Kalman gain is given by

Ke = Cf
eM

′(MCf
eM

′ +Re)
−1 (4)

where Cf is the covariance of the forecast ensemble Xf . Apostrophe denotes the

transpose. The ensemble is assumed to be of sufficient size, such that inverted matrices
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are nonsingular. See Evensen (2003) for derivations and further details.

The ensemble represents the probability density function of the state vector. At any

given time, the estimate of the state is the mean of the state ensemble, with the ensemble

covariance representing uncertainty in the estimate. The initial ensemble should reflect

belief about the initial state of the system. An advantage with the approach outlined

above is that state and parameter variables are estimated simultaneously, taking model

error into account (Evensen, 2009, pp. 95-97). The filter produces estimates conditional

upon observations up until and including a given time. When estimates conditional upon

the full information set is relevant, the estimates should be smoothed with the ensemble

Kalman smoother. The ensemble Kalman smoother can be formulated sequentially in

terms of the filtered estimates; see Evensen (2003, p. 360) for details.

The ensemble should be large enough to sufficiently represent the probability density

function in the state space. Computational limitations may restrict viable ensemble sizes.

In the meteorological and oceanographic sciences, where the ensemble Kalman filter is

applied to high-dimensional, chaotic systems, it is generally held that relatively small

ensembles can ensure statistical convergence (Evensen 2009). When the ensemble is small,

the covariance will be underestimated, ultimately leading to so-called filter divergence

where observations receive very small weights in the update (the state vector will then

not depend on the observations and diverges). An ad hoc remedy is to artificially increase

the ensemble covariance; the method is known as inflation (Anderson and Anderson 1999).

As an aid to compare goodness of fit of models and between models, we consider

different measures. The technical literature (see Evensen, 2003, and references therein)

often considers root mean squared errors and root mean squared innovations. (The term

innovations are used for the ensemble updates, given by the second right-hand term in

equation (3).) Errors in the parameter ensembles decline over time by construction, but

should stabilize before the end of the time series in the ideal case with a long enough time

series and an appropriate model. Innovations does not decline by construction, but are

also expected to stabilize in the ideal case. Weak or nonexistent signs of stabilization of
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either errors or innovations means either that the model has not converged (inappropriate

initialization or simply too few observations) or that the model is not a good model. While

useful, errors and innovations have limited ability to inform about model choice between

alternative models. To compare between models, we consider the Akaike (AIC) and the

Bayesian (or Schwarz) Information Criteria (BIC). With the ensemble Kalman filter, the

estimated density is represented by a discrete cloud of points in the state-space. While it is

possible to make distributional assumptions and carry out calculations of the criteria, we

apply a more rudimentary approach where distributional assumptions are avoided. First

of all, to make distributional assumptions with an involved covariance structure in a high-

dimensional space can be cumbersome. Second, distributional assumptions lead to heavy

calculations as the entire distribution has to be considered. In our rudimentary approach,

which simply consider a local density relative to the observation, any kind of covariance is

accommodated and the calculations are comparatively simple. The approach considers a

given neighborhood in the state-space around each observation where the density is given

by the relative weight of the neighborhood compared to the remainder of the state-space.

Weights are decided by the distribution of ensemble members within and outside the

neighborhood. The neighborhood should be as small as possible without being empty.

When comparing models, the neighborhood size which in related methodology would

be referred to as bandwidth should be kept constant. How to control for neighborhood

size is currently not clear to us. Given that the exact distribution of the ensemble

members vary for different runs of the filter, criteria calculations from more than one

run should be compared. When comparing different models, the basis for comparison

grows exponentially with the number of runs, such that relatively few runs (less than

ten) could form solid ground for comparisons. (The exact distribution depends on the

Markov Chain Monte Carlo mechanism, which has a strong, random element. In the

limit. where the ensemble size goes to infinity, the random element is cancelled out and

the criteria calculations are unique. In practice, one has to consider a number of runs,

where for example the mean difference in criteria are considered. Each run is equally
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representative for the criteria.)

Data and modeling

The international Council for the Exploration of the Seas (ICES) publish stock estimates

and landings of NSS herring, Atlantic mackerel and Atlantic blue whiting. For blue

whiting reporting on total stock and landings started in 1977. As juvenile individuals the

NSS herring spend their time in the coastal waters of northern Norway or in the Barents

Sea, and only appear in the Norwegian Sea along with the mature part of the stock at

the age of 3 - 4 years old. Therefore, and since the overlap and interactions with the

two other stocks mainly takes place in the Norwegian Sea, we use the spawning stock

biomass as the state variable for herring. For mackerel and blue whiting the choice of

state variable is not so clear cut. Both juvenile and adult blue whiting spend time in the

Norwegian Sea, while the mature individuals migrate west of the British Isles to spawn,

(some of) the juveniles remains in the Norwegian Seas. This is for a large part the case

with mackerel; a large part of the stock, both young and adult individuals, spend time

in the Norwegian Sea. For this reason we use the total stock biomasses for mackerel and

blue whiting as state variables in our model.

The biomass of the three stocks are the state variables; herring is denoted x1, mackerel

is denoted x2, and blue whiting is denoted x3. The harvest rates are denoted h1, h2, and

h3 for herring, mackerel and blue whiting. The parameters are denoted ck. The dynamic

model for the system is written:

dx1 =

(
c1x

m1
1

[
1 − x1 + x2 + x3

c4

]
− h1

)
dt+ σ1(x)dB1 (5)

dx2 =

(
c2x

m2
2

[
1 − x1 + x2 + x3

c4

]
− h2

)
dt+ σ2(x)dB2 (6)

dx3 =

(
c3x

m3
3

[
1 − x1 + x2 + x3

c4

]
− h3

)
dt+ σ3(x)dB3 (7)
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The stochastic increments dBi are independent, with mean zero and variance dt.

Correlations in the noise processes are reflected in the scaling term σi(x). The scaling

term is geometric, σi(x) = Σ ·x, where the upper triangular matrix Σ reflects covariation.

The first terms (c1 − c3) in each model equation is equivalent to the modified

(mi) logistic growth function, and the parameters c1, c2, c3, and c4 are interpreted

accordingly. The growth equations (5 - 7) are modified by the following modification

terms: m1 = 1.773, m2 = 1.856 and m3 = 1.807 for an initial c4 parameter equal to 30

million tonnes, and m1 = 1.801, m2 = 1.779 and m3 = 1.798 for an initial c4 parameter

equal to 20 million tonnes. (The idea of carrying capacity; the standard interpretation of

the c4 parameter in the modified logistic, becomes unclear in an ecosystem setting. The

capacity of the ecosystem to harbor any one specie depends on the state of the entire

system. Hence, intrinsic, single species notions such as the carrying capacity must be

treated with caution in all multi species approaches. Moreover, here we assume that

there is a common carrying capacity for all three species.)

All parameters are log-normal distributed, and are thus always positive. The signs of

the interactions are negative, for example, the herring stock is negatively affected by the

size of its stock as well as the size of the mackerel and blue whiting stocks.

The initial ensemble is drawn from a multivariate normal distribution. For the three

state variables, we use the first observations as the mean of the initial ensemble and 30%

of the first observation as standard deviation. As parameters enter the model equations

as ck = exp (αk), the parameter variable ensembles are defined in terms of the αk’s,

which may be called shadow parameters. Means and variances for the shadow parameter

variable ensembles are listed in Table 1. The table also lists the implied parameter mean

exp (ᾱk). Since it is intuitively much easier to relate to the actual parameters ck rather

than the shadow parameters αk, we refer to the actual parameters in the discussion that

follows.

For mackerel and blue whiting the single species intrinsic growth rates are estimated

to lie between 0.3 to 0.4 (Hannesson 2013; Ekerhovd 2003), and for herring it is assumed
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Table 1: Initial ensemble parameters and standard deviations

Parameter Implied Mean (exp ᾱk) Ensemble Mean (ᾱk) Ensemble St. Dev.
c1 - c3 1/1000 -6.69078 1.0

c4
30000a 10.30895 0.220000 9.90349

a Thousand tonnes

to about the same. However, here the growth equations are modified logistic functions,

and the intrinsic growth rates must be scaled accordingly. Hence, the initial means for

the growth parameters for herring, mackerel and blue whiting, c1 - c3, were set to 1/1000.

Utne et al. (2012) calculated the consumption of zooplankton by herring, mackerel

and blue whiting in 1997, which was estimated to be 82 million tonnes. This gives a

consumption/biomass ratio in the range 5.2 - 6.3. The total biomass of the pelagic fish

stocks was estimated to be between 13 and 16 million tonnes. However, the pelagic fish

stock is subject to substantial commercial fisheries and the question remains what would

the pelagic fish biomass be if there was no fisheries? Is the total ‘carrying capacity’

biomass of the pelagic fish stocks substantially larger than the biomass we observe in the

current situation? Moreover, all three fish stocks spend a substantial amount of time in

waters where they do not interact with each other. This indicates that the c4 parameter

could be substantially larger than the observed biomass. Thus, the initial c4 parameter

value was set to 30 million tonnes and 20 million tonnes to test what fitted the data best.

Results

Figure 1 shows the estimated stock levels with the c4 parameter initialized at 30 million

tonnes (solid lines) for all three species herring (top panel: State 1), mackerel (middle

panel: State 2), and blue whiting (bottom panel: State 3). The figure also shows the

observed stock levels (x-marks) which, except for three observations of herring (in 1988,

1989 and 1990), lie within two standard errors from the estimate (the shaded areas show

two standard errors in each direction from the estimate). It is also worth noticing that
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Figure 1: Estimated stock levels (solid lines), initial c4 = 30 million tonnes, with two
standard deviation intervals (shaded areas), stock observations (x-marks), and catch data
(circles).

for blue whiting several of the observations is close to the upper limit of the two standard

deviation band. The general impression is that the model captures much of the dynamics

of the ecosystem.

Figure 2 shows the estimated stock levels with the c4 parameter initialized at 20 million

tonnes (solid lines) for all three species herring (top panel: State 1), mackerel (middle

panel: State 2), and blue whiting (bottom panel: State 3). The figure also shows the

observed stock levels (x-marks) and the two standard deviation intervals (shaded areas).

The general impression is that the model does not captures as much of the dynamics of

the ecosystem as Figure 1 with the c4 parameter initialized at 30 million tonnes. For

example, several of the blue whiting observations lie outside the two standard deviation

band.

Figure 3 shows the parameter estimates when the c4 parameter is initialized at 30

million tonnes, with two standard deviations intervals for the model in equations 5 -

12
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Figure 2: Estimated stock levels (solid lines), initial c4 = 20 million tonnes, with two
standard deviation intervals (shaded areas), stock observations (x-marks), and catch data
(circles).
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Figure 3: Estimated parameter values (solid lines), initial c4 = 30 million tonnes, with
two standard deviation intervals (shaded areas).

7. All parameters are fairly stable over most of the time series, with some tendency

of decreasing spread over time. The exception here is the carrying capacity parameter

(parameter 4) which is also fairly stable, but with a wide spread (initially approximately

17 million tonnes reduced to about 12.5 million tonnes at the end).

Figure 4 shows the parameter estimates when the c4 parameter is initialized at 20

million tonnes, with two standard deviations intervals for the model in equations 5 - 7.

All growth parameters (c1 − c3) behave similar to the ones in Figure 3, i.e., when the

c4 parameter was initialized at 30 million tonnes. However, the parameters are not as

stable and the two standard deviations areas do not continue to decrease after the initial

drop. In fact, for parameter 3 it increases slightly towards the end. The development

of the carrying capacity parameter (parameter 4) is not as stable as compared to Figure

3, but width of the spread is decreasing over time from about 12 million tonnes at the

beginning to about 8.5 million tonnes at the end.
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Figure 4: Estimated parameter values (solid lines), initial c4 = 20 million tonnes, with
two standard deviation intervals (shaded areas).

Figure 5 shows the root mean squared innovations and root mean squared errors of the

αi ensembles when the c4 parameter is initialized at 30 million tonnes. Only parameter

1 have errors well below half of the maximum at the end of the time series. However, the

innovations for all parameters show decreasing trends towards the end of the time series.

Figure 6 shows the root mean squared innovations and root mean squared errors of the

αi ensembles when the c4 parameter is initialized at 20 million tonnes. The growth rate

parameters (parameters 1, 2, and 3) all have errors close to or below half of the maximum

at the end of the time series, and the innovations show decreasing trends towards the end

of the time series. For the carrying capacity parameter, the ensemble convergence is less

pronounced but the innovations appear stable with no increasing trend.

Table 2 shows the last estimated parameter values c1 − c4 for both cases of

initializations of parameter 4 at 30 and 20 million tonnes, respectively. We see that the

growth parameters c1, c2 and c3 when c4 is initialized at 20 million tonnes are higher than
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Figure 5: Root mean squared innovations and root mean squared errors, initial c4 = 30
million tonnes, for all parameters.

Figure 6: Root mean squared innovations and root mean squared errors, initial c4 = 20
million tonnes, for all parameters.
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Table 2: Estimated parameters values and information criteria statistics.
Average over 5 run with a state-space neighborhood equal to 2000, and 1500
ensemble members

Parameter Initial c4 = 30 million tonnes Initial c4 = 20 million tonnes
c1 0.000811 0.001211
c2 0.000270 0.000837
c3 0.000294 0.000439
c4 26106a 18498a

AIC 49.8280 67.3558
BIC 55.9334 73.4613

a Thousand tonnes

when c4 is initialized at 30 million tonnes. When it comes to the estimate of the carrying

capacity parameter itself (c4) they are below the initial values, approximately 26 and 18

million tonnes, respectively. I addition, Table 2 list the Akaike Information Criterion

(AIC) and the Bayesian (Schwarz) Information Criterion (BIC) statistics measuring the

goodness-of-fit. According to these criteria, the initialization of c4 at 30 million tonnes

leads to the best fit.2

The initialization of c4 at 30 million tonnes is favored over that of 20 million tonnes,

where the latter put more emphasis on the observations than the former. Further,

comparing Figure 1 with Figure 2 shows that the fit of the model is better when initialized

at 30 million tonnes; the differences between the measurements and the estimated means

are generally within two standard deviations. Furthermore, in the ensemble Kalman filter

literature, a traditional tool to evaluate filter and model performance is to inspect plots

of root mean squared innovations and root mean squared errors, cf. Figures 5 and 6.

Innovations are the corrections or updates which occur in the analysis step. Errors are

also called ensemble anomalies, and are the mean difference of the updated ensemble

and the estimate (the ensemble mean). Thus, the root mean squared errors are given by
2The information criteria presented in Table 2 are the averages over five independent parallel runs

of the models. What constitutes a substantial difference in criterion values? For BIC Kass and Raftery
(1995, p. 777) suggest the following. 0-2: not worth more than a bare mention, 2-6: positive; 6-10:
strong, and 10 or more: very strong. In this case, while the average difference was almost 19, the
variation is substantial, ranging from a minimum of 0.3 to a maximum of 47. However, it should be
noted that out of the 25 possible comparisons only two was below 2.
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Figure 7: Forecast two years ahead. White solid line: the median.

E[E[Xa]−Xa]3. The absolute ensemble mean innovation should in theory decline over the

time series and eventually stabilize. A lack of decline in the innovations can be a general

sign of model misspecification, filter divergence, too little measurement error, or other

more esoteric problems (Kvamsdal and Sandal 2012). Since our parameters are modeled

as ck = exp (αk), where αk is represented by an ensemble, the confidence intervals of

the ck may not give the correct impression of wether an estimate improves over the time

series or not (wether the ensemble converges or not). In comparison, errors decline by

construction. Too much error decline is not healthy, however. If the root mean squared

error goes to zero, the filter exhibits ensemble collapse and filter divergence.

Figure 7 shows the two year forecast of the model parameterized from the initialization

with c4 = 30 million tonnes. The white curve shows the median forecast, while the

shaded area illustrate the forecast uncertainty. The size of the shaded area demonstrates

that there are considerable uncertainty in the system. Some observations lie outside the
3a denote the analysis.
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shaded area, but most are well within the forecast range. The forecasts seems to be

downward biased, however. A reason could be that there is too much uncertainty in the

estimated model. Uncertainty induces a downward drag on the drift term (Lund 2002)

which would be too large if uncertainty is overestimated. Overestimated stochastic terms

are rarely a problem with the ensemble Kalman filter, but with relatively short time

series with considerable uncertainty in the parameter estimates, the estimated diffusion

terms, which take account of the full uncertainty in the system, could still overestimate

uncertainty. Forecasts will then be prone to whatLund (2002) labelled ‘stochasticity

induced depensation’ in the growth equation. For sufficiently long time series, the problem

would be smaller, as parameters in a good model would be relatively certain and the

diffusion term would be comparatively smaller. That overestimated uncertainty is the

culprit of the downward bias in the forecasts is further sentimented by deterministic

forecast calculations which simply ignores the diffusion term. Deterministic forecasts are

more on par with the observations, at least in terms of absolute levels. All in all, we

conclude that the results from comparing two-year forecasts of the estimated, stochastic

model with the observations are mixed. While the main, dynamic features seems to be

picked up, and most observations are within the forecast range, the forecasts are often

too small, and a deterministic forecast has less or no downward bias.

Conclusion

We have estimated the parameters of a modified logistic ecosystem model of the pelagic

fish stocks in the Norwegian Sea with the Ensemble Kalman Filter. Our model only

contains four parameters. The model appear to capture much of the dynamics in the

system as well as the interactions between the different species. The interactions are

competitive, mutually destructive interactions, where NSS herring, mackerel and blue

whiting prey upon the same food source(s), thus, limited by a common ‘carrying capacity’.

Increase in one species’ biomass leads to reduced growth for all three species. We could
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have chosen a more elaborate model, allowing for more detailed intra specific and inter

specific interactions. However, when we did this, the parameter values were heavily

dependent on the initial values with no dynamics and little convergence over time.

While we use data from 1977 to 2010, after the stock collapse around 1970 the NSS

herring stock was only found in Norwegian coastal waters, as the stock became more

abundant it started to migrate into the Norwegian Sea again around 1990. In the late

1970s the Norwegian Sea was an important harvest area for the blue whiting fishery,

however, the blue whiting catches in the Norwegian Sea declined and the waters west of

the British Isles became the most important fishing areas. It was not until the late 1990s

that the blue whiting fishery in the Norwegian Sea started to increase again. Similarly, in

2008, the mackerel stock began to migrate into the Icelandic economic zone. Iceland had

not previously fished mackerel and blue whiting in any significant amounts, but began

doing so when they showed up in Icelandic waters. The degree of overlap and potential

interaction between the stocks must be said to have been low or virtually nonexistent

for a large part of the analyzed time period. Moreover, the stocks do not interact with

each other all the time; part of the year they live in different waters and only overlap

during their feeding migrations in the summer. Although the overlaps takes place during

an important phase of the fishes’ yearly cycle, they all have niches where they do not

compete with each other for food.
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We have estimated the parameters of a modified logistic ecosystem model of 
the pelagic fish stocks in the Norwegian Sea with the Ensemble Kalman Filter. 
Our model only contains four parameters. The model appear to capture much 
of the dynamics in the system as well as the interactions between the different 
species. The interactions are competitive, mutually destructive interactions, where 
Norwegian Spring Spawning herring, Northeast Atlantic blue whiting and Northeast 
Atlantic mackerel prey upon the same food source(s), thus, limited by a common 
‘carrying capacity’. Increase in one species’ biomass leads to reduced growth for 
all three species. While the main, dynamic features seems to be picked up, and 
most observations are within the forecast range, the forecasts are often too small, 
and a deterministic forecast has less or no downward bias.
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