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Preface 
 
This paper documents the State-of-the-art research part of the research grant 06-MARK-I25 

from the Nordic Energy Research to the Energy Forum EF for 2007-09, administered by the 

SNF. The state-of-the-art topic chosen for 2007 was “Optimal investment in market-based 

electric power systems: Market and regulatory issues”. A presentation of the project, with 

some preliminary observations and discussion, was given by the first author, Einar Hope, at 

the Energy Foresight Symposium (EFS) in Bergen in March 2007; see 

www.snf.no/energyforumef. 

 

A Reference Group was appointed for this part of the project, consisting of Professors Eirik S. 

Amundsen, University of Copenhagen, Fridrik Mar Baldursson, University of Iceland, Lars 

Bergman, Stockholm School of Economics, and Pertti Haaparanta, Helsinki School of 

Economics. We thank the members of the RG for constructive advice and comments. 

 

The literature survey in section 5 of the paper builds partly on SNF-report R02/08: Overview 

of investments in electricity assets, written by the second author of the paper, Frode Skjeret. 

This Report is financed by the Norwegian Water Resources and Energy Directorate (NVE) 

and Statnett. There is no financial overlap between that project and the present NER-project. 
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1. Introduction 
 
Optimal investment in market-based electricity systems is one of the most important, 

complex and challenging problem presently to be faced within the realm of energy 

economics research, and also with regard to the operational implementation in optimal 

investment market design and regulation. It is complex and challenging because of the 

special properties and characteristics of electricity as a commodity in investment market 

terms, and it is important because the pressing need for new capacity investment in the 

electricity industry asks for optimal investment solutions with regard to quantity, quality, 

timing and location of specific investments.  

 

A wealth of knowledge and insights has accumulated in recent years about the experience 

of various countries and regions with electricity sector reform and the liberalization of 

electricity markets.1 The evidence of the pros and cons of power sector reform emerging 

from those studies is not clear-cut and uniform, but at least it should give policy 

reformers some guidance and understanding of how to undertake successful market and 

regulatory reforms in this complex sector. However, the evidence, e.g. with regard to 

economic efficiency gains from market reform,2 stems largely from the effects of 

liberalization and deregulation within power systems of a given capacity, while our 

experience with market-based investment for the optimal dimensioning of the capacity of 

a given system is much more limited. This is partly due to the fact that generally there 

was considerable excess capacity in the power systems exposed to liberalization prior to 

the market reform, and thus the reform could proceed without the investment market 

being put to a real test of optimal capacity dimensioning until the excess capacity more or 

less was absorbed by increased demand for electricity. 

 

                                                 
1 Notable examples of collections of such studies are the comprehensive volumes edited by Sioshansi and 
Pfaffenberger (2006) and Sioshansi (2008), the five developing countries’ studies edited by Victor and 
Heller (2007), the Special Issues of The Energy Journal (2005) and (2008), and an issue of the periodical 
Economic and Political Weekly (2005), devoted to global experience with electricity market reforms. A 
recent up-date is Joskow (2008). For a study specifically of the experience with the Norwegian electricity 
market reform, see Bye and Hope (2006). There are also quite a few studies undertaken in connection with 
sector reform programmes, e.g. by the World Bank. 
2 A recent study of cost reduction in the US electric generating industry due to regulatory restructuring is 
Fabrizio, Rose and Wolfram (2007). 



 2

The purpose of this state-of-the-art research paper is to surveying the literature on 

investment in market based electricity systems as a background for identifying and 

discussing some important issues in the optimal design and operation of such systems. A 

fundamental distinction goes between the generation and trading part of the system on the 

one hand, or more generally the competitive system part, and the electric power network 

part on the other, or more generally the natural monopoly system part. Can the two parts 

really be analyzed separately in relation to each other or are they so intertwined that such 

a separation cannot be made? We survey and discuss the two parts separately, with due 

regard for their inherent interdependencies with regard to the optimal design and 

functioning of the integrated system and then discuss some of those interdependencies 

more specifically.3 

The focus of the study is on optimal investment in market-based electric power systems 

and not on market-based energy systems more generally. Thus, issues related e.g. to 

investment opportunities and investment market design deriving from horizontal 

diversification across the energy industry are not covered, i.e. from electricity into other 

energy network sectors like natural gas, district heating, oil product distribution, etc. but 

also to other network sectors like telecommunications and water systems, due e.g. to 

economies of scope; cf. the term multi-utility firms. 

 

In section 2 we list some special market characteristics and properties of electric power as 

a commodity and of electricity markets to be taken into consideration when discussing 

optimal investment in market-based electricity systems, while section 3 lists the 

performance criteria that we will use in the study, with economic efficiency as the overall 

objective. In section 4 we ask the question: why should not optimal investment occur in 

well-designed electric power markets and then discuss potential causes of market failure 

in such markets. section 5 is devoted to a survey of the literature on investment in electric 

power systems, where generation (production) and transmission of electric power are 

treated separately, while section 6 discusses interdependencies between generation and 

                                                 
3 Already in 1983, when the discussion of a deregulation and liberalization of the electricity sector was at 
an early stage, Joskow and Schmalensee (1983) pointed to the crucial role of the transmission network for 
the efficient functioning of electric power markets and warned against liberalization of the markets without 
taking transmission access issues, transmission rights and network capacity constraints into account. 
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transmission. In section 7 we make some reflections on the basic question whether 

optimal investment will occur in decentralized, market-based electric power systems, 

ending the state-of-the-art paper with some concluding remarks in section 8. 

 

2. Market characteristics and properties of electric power 
 

Above we have referred to special characteristics and properties of electricity as a 

commodity and of electricity markets, without listing them explicitly. Some of the most 

important market characteristics and properties in this context are: 

• Electricity cannot be stored (except for water storage in hydro power based 

systems), and is a homogeneous product in market terms. However, technically 

electric power is a multi-dimensional product (energy (kWh), capacity (kW), 

voltage, frequency, reactive power, reliability, etc.), with implications for 

investment decisions in relation to stated objectives for the power system. 

• Supply and demand of electricity have to be balanced instantaneously by a system 

operator to avoid system breakdowns or delivery fallouts. 

• Demand for electricity is very inelastic in the short run. Demand responsiveness 

of consumers is limited and occurs generally with a time lag, because there is 

limited scope for real time pricing, particularly for small consumers, at least at the 

present state-of-the-art of technology and the operational design of real time 

pricing arrangements. 

• Supply of electricity is also rather inelastic in the short run, particularly when 

approaching capacity constraints in production. The long run price elasticity is 

also typically low. 

• Production and transmission of electricity are capital intensive and investments in 

capacity extensions are typically lumpy, irreversible, and long-lived. Generally, 

there is a fairly long gestation period for new investment, with implications, e.g., 

with regard to contestable entry to the market.  

• The technology of generation of electric power from different energy forms 

(hydro, nuclear, coal, oil, etc.) has different cost structures and characteristics. 
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Thus, the optimal composition of the production system in relation to demand is 

an important investment consideration. 

• The electricity transmission network is of fundamental importance as an 

instrument or facilitator for decentralised, market based transactions and the 

efficient functioning of electricity markets. Thus, the mechanisms determining 

optimal investment in the transmission network have to be clarified and 

understood. 

Prior to the early electricity market reforms of the late 1980s, many observers, 

particularly from the engineering side, warned strongly against any attempt at market 

liberalization of the electric power sector, just because of the special characteristics and 

properties of electricity in market terms. Even though there still are some fundamental 

critics and sceptics, the general attitude now, across disciplines, is that those properties 

should be thoroughly understood and taken due account of in the optimal design of 

electricity markets - short run as well as long run ones.4 

 

 

3. Objectives and performance criteria 
 
The Norwegian Energy Act of 1990 can be taken as an example of a modern formulation 

of the legal basis for a market-based electric power system. The purpose of the Act is 

stated as follows: 

“The Act shall ensure that the generation, conversion, transmission, trading, 
distribution and use of energy are conducted in a way that efficiently promotes the 
interests of society, which includes taking into consideration any public and private 
interests that will be affected.” 

 
The purpose is stated fairly broadly and generally, but the overriding objective is economic 

efficiency throughout the value chain from generation to end-use of electric power. Thus, in 

the standard way, the overall economic efficiency concept may be decomposed in sub-

concepts or efficiency dimensions, e.g. as follows:5 

• Static efficiency (operation) 

                                                 
4 For a recent, stimulating discussion on the critical side by an economist, see Timothy J. Brennan (2007). 
5 For a more detailed discussion of efficiency concepts in relation to electric power markets and 
competition, see Hope (2005). 
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o Cost efficiency/technical efficiency; elimination of x-inefficiency. 

o Optimal use of total production and network capacity. 

• Dynamic efficiency (investment and innovation) 

o Optimal dimensioning of production and network capacity. 

o Optimal mix of production technologies and composition of network system; 

optimal balance between capacity enhancing investment versus investment in 

flexibility in relation to demand. 

o Optimal introduction of new technologies and products in the value chain; 

incentives and capacities for innovation. 

o Facilitating integration of electricity markets by investment and regulation – 

spatially and across energy forms for electricity production – and also in 

relation to other energy sectors, thereby tapping the efficiency potential in the 

form of economies of scale and scope through market integration. 

o Optimal investment in security of supply and system reliability of the electric 

power system. 

In the public debate on power market reform, the focus has often been more on the income 

distributional or equity aspects, e.g. concern about the consequences of high electricity prices 

for consumers at different income levels, than on economic efficiency considerations. Such 

aspects are also alluded to in the formulation of the purpose of the Norwegian Energy Act 

above, and even more directly, e.g. in the UK Utilities Bill. However, we take economic 

efficiency as the general performance standard for the discussion in this paper.6 

 

 
4. Potential sources of market failure for optimal electric power      
investment 
 
A starting point for a discussion of the optimal, operational design of investment markets for 

electric power could be to ask the question: why should not investment decisions in 

decentralized markets lead to an efficient outcome along the efficiency dimensions outlined 

under section 3 above? The economic response to it would be to identifying potential sources 

of market failure for realizing optimal investment throughout the electric power value chain 

                                                 
6 For some discussion of efficiency versus equity objectives, see Hope (2005). 
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from generation to end-use. A standard classification system of potential causes of market 

failure is as follows; indicating potential causes for electric power markets in parentheses: 

 

• Public goods aspects (security of supply, supply adequacy). 

• Externalities in production and consumption (green house gas emissions). 

• Market imperfections: 

o Economies of scale (natural monopoly of the transmission network). 

o Monopolization; exercising market power (market concentration, market 

dominance). 

o Missing markets, e.g. for capacity regulation or financial risk hedging; 

imperfectly functioning markets. 

• Regulatory imperfections (weak or improper competition policy enforcement; weak 

or improper incentives for investment in regulatory policy regimes). 

• Imperfect information (asymmetric information, e.g. between producers and 

consumers or between regulators and those being exposed to regulation). 

• Uncertainty (long pay-back period for new investment; long-lived investment). 

 

Electricity investment markets are prone to suffer from market failure over the whole 

spectrum of potential causes listed above. In the literature survey in section 5 we concentrate 

on investment properties of the market-based electricity system as such and not so much on 

the “surrounding” system, i.e. issues related to externalities, regulatory imperfections and 

other forms of policy intervention in the investment markets. There is also more emphasis on 

the power production and transmission parts of the value chain, and on relationships between 

production and transmission, than on the end-use of power part of the chain.  

 

  

5. Investment in electric power systems: A survey of the literature7 
 
A survey of the literature on investment in market-based electricity systems has, 

necessarily, to be selective. In this section we focus on investment in generation and 

                                                 
7 The section draws heavily on Skjeret (2008). 
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transmission, respectively, on the assumption that they can be analyzed separately, while 

in section 6 we discuss interdependencies between generation and transmission. 

 

5.1 Investment in generation 

Among the several factors that need to be taken into account when assessing optimal 

investment in electric power generation, five of the most important ones are discussed 

below. 

 

5.1.1 Licensing 

In order for an investor to be able to build a generation facility, licenses from public 

agencies are normally required. There are many aspects of the licensing procedures that 

we cannot go into, e.g. the capacity and the competence of the licensing agency to handle 

applications in a timely fashion so that unnecessary delays in the investment process do 

not occur.  The licensing process for investing in generation capacity today may, 

however, be used as a tool for assessing future generation activities, not only because one 

can foresee intended investment plans, but also because one may learn about the 

profitability of different technologies in various regions.8 This requires that the 

application for licenses actually describes the intentions of the investors. Further, the 

licensing process may be a valuable device for the system planner or operator9 to govern 

the future investment process on the production side. This requires though that the system 

planner and the licensing agencies are closely connected.10  

 

5.1.2 Profitability 

Assuming that licensing is not an obstacle, private entities subject to competition must 

find a project profitable in order to invest in new generation capacity, and will therefore 

                                                 
8 The deregulation of the Norwegian electricity system has recently been evaluated in ECON (2007) and 
Hammer (2007), also in relation to licensing. For a more general evaluation of the experience with the 
liberalization of the Norwegian and Nordic electricity markets, see Bye and Hope (2006 and 2007). 
9 System operator is here used in a transmission system operator (TSO) sense, having direct influence over 
transmission investment, and not in an independent operator sense (ISO), where such influence is typically 
more indirect. In the Norwegian system the Norwegian the energy regulator, NVE, has the main 
responsibility for system planning, while Statnett SF is the system operator (TSO). 
10 ECON (2003) discusses the relationship between a transmission system operator (Statnett SF) and 
generators in an investment context. 
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look at expected future prices and costs when determining their optimal level of 

generation capacity. Cases where firms first invest in a certain level of production 

capacity and in later periods maximise profits taking the investment choices for given 

(during the working life of the investment) was initially analysed in Johansen (1972).  

 

Green (2006) discusses optimal investment in generation capacity using the framework of 

peak-load pricing. He argues that, within the framework of peak-load pricing, there are 

three reasons for investing in capacity. The first is the case when the market has a lower 

than optimal level of capacity of a particular technology. Second, if a plant is allowed to 

reach the end of its physical working life, it must be replaced. Third, plants need not be 

allowed to reach the end of their working life in equilibrium. If a more efficient plant 

type becomes available it may be profitable to replace the old plant type with the newer 

and more efficient one. Green (2007) also discusses the case of optimal plant mix in a 

generation market, noting that efficiency is not only restricted to the optimal level of total 

capacity, but also the optimal mix of the various generation technologies.  

 

5.1.3 Market rules and operations 

Joskow (2006) discusses incentives for investment in generation capacity, and in 

particular two potential impediments due to market rules and operational procedures.11 

Following Cramton and Stoft (2006), he argues that spot prices cannot be expected to be 

high enough to provide proper incentives for investors to invest in a cost-minimising 

portfolio of generation assets. This is referred to as the “missing money” problem. It is 

also argued that the rules governing the market may be used in a less than optimal way, 

for instance, price caps are regarded as detrimental for investments. A part of such 

reasoning may also be related to regulatory uncertainty about the future development of 

market rules, potentially affecting prices and also the expected behaviour of transmission 

system operators. 

  
                                                 
11 Volatile prices – a third topic mentioned by Joskow – are in some instances argued to reduce the amount 
of investment on the generation side of electricity markets. The example in Varian (1992), page 42 (and in 
most other textbooks in economics) illustrates that – since profit functions are assumed convex – 
uncertainty in prices will lead to a non-negative change in profits. As noted by Joskow (2006): “I do not 
think much of the argument that price uncertainty per se deters investment”. 
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The second feature related to market rules and operations is the choice of how regional 

prices of electricity are determined. Prices are allowed to vary regionally in most 

deregulated electricity markets, and also access charges affect the cost of production 

according to where the facility is situated. The literature on regional pricing in electricity 

were initiated by the seminal work of Schweppe et al (1988). Following their work, Chao 

and Peck (1996), Cardell et al (1997) and Bushnell and Stoft (1996) apply models of 

Schweppe et al (1988) to study various economic aspects of transmission constrained 

electricity markets. The main conclusion from these models is that regional price 

differences will give private agents incentives to invest in areas of high prices (most 

likely excess demand areas), and potentially make investment in load in low-price areas. 

These models focus largely on how the price-mechanism in various markets (spot market, 

forward markets and ancillary markets) could best be organised in order to provide 

incentives for deregulated entities to behave competitively. Since any investment in 

transmission or generation (or demand) may affect regional prices, investors must also 

take into account the effect their investment has on prices. E.g. in Norway, zonal prices 

rather than nodal prices are applied. This has been analysed by Bjørndal and Jörnsten 

(1999) and Bjørndal et al (2002). Bjørndal et al (2002) also discuss various methods for 

congestion management and how these methods potentially affect prices and therefore 

the economic surplus of the various agents, including the system operator. They argue 

that the system operator may have incentives to affect the location of capacity constraints, 

thereby affecting the system operator’s revenue. 

  

Both arguments mentioned above (“missing money” and “market rules”) rest on three 

characteristics of electricity markets that may well lead to a less than optimal level of 

investment on the generation side. The above-mentioned impediments to investing 

optimally  in generation technologies are further examined in Joskow (2006) who 

investigates characteristics of i) certain production plants, ii) market operations, iii) 

demand side, and iv) flow of electricity over the grid. First, a fraction of the generation 

capacity in most thermal electricity markets is only used in periods of peak demand, thus 

the revenue required to cover both production and investment costs must be earned 

during only a few hours each year. These plants are naturally sensitive to the level of 
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prices in the few hours when they are in operation, and price caps or public intervention 

during those hours (either on the demand or generation side) may reduce incentives to 

invest in these capacities.  

 

Similar arguments can be used when analysing incentives to invest in generation capacity 

e.g. in the hydro based Norwegian power market, both in relation to wind power and 

hydropower production capacity. In a hydro based system one may reason similarly in 

relation to storage capacity, since one optimally must store water for dry years occurring 

only rarely. Second, it is argued that electricity generation capacity in any one hour must 

be higher than the demand for electricity, in order to provide reserve capacity. 

Accordingly, the combined electricity market must carry an “inventory.”12 When the 

reserve requirements are violated, system operators take measures to increase the reserve 

capacity. If these measures are not properly arranged and applied, firms may not have 

incentives to invest in a sufficient level of capacity. For example, reserve production 

capacity owned and operated by the TSO can be used to affect prices. Reserve production 

capacity should only be used in extreme situations to deter system breakdown, and not in 

order to reduce prices in periods of peak demand. Third, real time pricing is in use only 

partially and individuals may not have the proper incentives for responding in situations 

of scarcity.  

 

Joskow and Tirole (2004) point up three reasons for why the demand side does not adjust 

consumption according to real-time prices in the wholesale electricity market. First, 

consumers may not have real-time meters installed. Second, if small consumers do have 

real-time meters installed, the cost savings from adjusting demand according to prices 

may be relatively small. Finally, some large consumers may find it very expensive to 

adjust its consumption in the short run, making them less flexible. Thus, short-term 

scarcity situations (in Norway, e.g. a very cold winter day) may not to a satisfactory 

degree reduce demand for electricity. Reliability of supply is therefore frequently in the 

very short term regarded as a public good (see for instance Hung-po Chao et al (2005) 

                                                 
12 There are in principle two ways of carrying this inventory, either by purchasing generation capacity or by 
purchasing the right to close down consumption units. 
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and section 7 in this paper). This problem may - in a hydro based electricity system – also 

be relevant in the long term, when optimal storage of electricity must be determined 

months prior to when the scarcity situation sets in. Finally, electricity flows according to 

physical laws and re-directing the flow of electricity comes at a high cost. Thus, the 

system operator is not adequately able to differentiate between consumers with varying 

degrees of marginal willingness to pay for electricity and reliability.  

 

The general impediments for investment in generation capacity will not be studied here 

per se; rather the implications for investment in generation will be discussed in relation to 

the planning of investment in transmission capacity. The general literature on investment 

in electricity is to a great extent concentrated to thermal production facilities; analyses of 

hydropower markets are found in Førsund (2007a).13  

 

5.1.4 Access charges 

A fourth factor affecting the decisions of investing in generation capacity is the charge 

required for getting access to the grid. One particular concern when it comes to providing 

incentives for an efficient electricity market is how generators optimally should pay for 

costs related to connecting new production facilities to the transmission grid. If new 

generation capacity is connected to the grid, all regional prices – and all relative prices – 

are potentially affected, and may require additional transmission capacity. Access charges 

must therefore be arranged so that proper incentives for generation firms to invest 

optimally are provided.  

 

This is of general relevance for transmission grids as new production facilities are 

required to meet increases in demand. This is also relevant since authorities in many 

countries aim to give incentives for increasing the use of renewable electricity 

technologies in production. Of particular interest is the focus on providing incentives for 

the construction of wind farms located far from load centres. Access (to the grid) is a 

commodity that users of the grid should pay for. Since additional generation capacity 

                                                 
13 See also Førsund (2005), von der Fehr (2005), Crampes and Moreaux (2001), Hoel (2004), and Garcia 
et al (2001). 
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affects the flow of electricity on the grid, there may be a need for strengthening the 

transmission network. There are also costs to society (externalities) that the investor 

(generation-firm) does not take into account unless an access charge regime is in place. 

One may therefore argue that the costs to the network consists of several cost components 

that must be paid for, either by i) the new generating facility, ii) the consumers or iii) all 

entities demanding network services. Assume that the total cost of connecting a new 

production facility (TC ) is given by: 

L S R L RDTC C C c c c= + + + + . 

LC  gives the (local) fixed costs related to connecting the production facility to the 

network, while SC  is the (central) fixed cost related to network upgrades required in 

other parts of the network. As the production facility is connected to the grid, and 

production takes place, this entity also affects the reliability of the network. This 

component is described by Rc . What is more, the flow of electricity on the network will 

be altered and the losses in the network is altered, this is given by Lc . Finally, RDc  gives 

the costs related to redispatch. Note that only the fixed local investment cost is always 

positive.  

 

The debate on access charges for new generation facilities is often analysed via two 

extreme versions of access charges, deep and shallow access charges. The former type of 

access charge implies that the generator must pay L SC C+  up front and also R L RDc c c+ +  

during the life of the production asset.14 The other extreme – the shallow access charge – 

takes a very different view. In this case, only the local fixed costs of connection are paid 

by the new generation facility, while all other costs are covered by a system charge.15 The 

following table illustrates the alternative access charges: 

                                                 
14 A scheme similar to this is applied in the Pennsylvania-Jersey-Maryland electricity market, Hiroux 
(2004). Jamasb et al (2005) argues that there is an example in the Pennsylvania-Jersey-Maryland-market 
where the cost of connecting a new production facility to the network would equal the cost of building the 
generation facility. 
15 A version of a shallow connection charge is applied in the Danish electricity market, Hiroux (2004). 
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Table 1: Access charging 

 GENERATOR CHARGE SYSTEM CHARGE 

DEEP ACCESS CHARGE L S R L RDC C c c c+ + + +   

SHALLOW ACCESS CHARGE LC  S R L RDC c c c+ + +  

 

If one assumes that the system operator is perfectly regulated, so that all charges are 

recouped either via producers or consumers (or both), the system operator may be 

indifferent between deep and shallow access charges. Two general results are readily 

available; first, when generators have to pay for all the connection costs, the access 

pricing regime provides high-powered incentives for localising production plants in 

regions where connection to the grid is favourable. Second, when the access charge is 

shallow, incentives are to a large extent rigged so that the cheapest production plants are 

being built. From a welfare maximising point of view, neither of the two extremes is 

necessarily desirable. On the one hand, shallow access charges may lead to an energy 

system with cheap electricity production entities in the wrong regions, while deep access 

charges may give expensive production facilities in favourable regions.  

 

If nodal prices could be expected to bring about optimal investments on the generation 

side, these could be used as approximations of variable charges, and fixed charges would 

be required to be recouped by the system operator, for instance via taxation. Jamasb et al 

(2005) discuss several issues related to the design of optimal access charges for 

distributed generation plants, taking both theoretical and political issues into account. 

Among the issues discussed are: 

 Deep versus shallow access charges  

 Forward looking access charges  

 Locational signals for load  

 Differentiation between energy charges, capacity charges and fixed charges 
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5.1.5 Lumpy investments 

A typical aspect of investments in the electricity sector (both transmission and 

generation) is lumpiness. In this section two issues related to lumpy investments are 

discussed.  

 

Smeers (2006) argues that there is no common usable understanding of long-run marginal 

costs in the electricity market. He argues that cost allocation rules need not be the best 

way to proceed, and that such a framework need not provide the correct signals for 

investors looking far into the future when determining whether to invest in additional 

capacity or not. Using a model of integer programming, thereby allowing for lumpy 

investment in transmission, Smeers argues that the three criteria that are used when 

evaluating investments, i) economic efficiency, ii) cost reflectiveness and iii) non-

discrimination, cannot simultaneously be obtained. However, one should not take all 

lumpy investments or non-convexities as problematic. Only in cases where the size of the 

lumpy investments are large compared to the overall market (or regional market when 

transmission constraints are present) does this pose a problem. This is similar to the 

traditional microeconomic argument of a large set of competitive firms described by both 

fixed and variable costs of production. Each and every firm has a U-shaped average cost 

curve. However, although individual firm’s supply functions are discontinuous, the 

discontinuities are irrelevant in a large market.  

 

5.2 Investment in transmission 

In order to secure static efficiency, the system operator needs to see to it that the current 

transmission assets in place are used optimally. This can be seen in conjunction with the 

ability of the system to provide supply security. However, the transmission operator must 

also invest in transmission capacity and facilitating efficient investment in production 

capacity, so that supply adequacy is secured. This involves creating incentives for agents 

to invest in capacities necessary to meet future demand. Transmission adequacy is often 

taken to consist of two elements, sufficient capacity to balance load and generation, given 

known and unexpected outages, and sufficient capacity in order for firms to sell 

electricity at marginal cost, thereby securing an efficient electricity generation market. 
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Thus, the first component is related to reliability, while the second is related to merchant 

aspects of the electricity market. 

 

5.2.1 Licensing and public resistance 

Building transmission lines in a deregulated market is a task for investors (or public 

agencies), but there are communities that may be adversely affected by these investments. 

In economic jargon, this implies that transmission investment imposes negative 

externalities on others. For instance, building a transmission line across a national park 

would most likely create a cost to society, in addition to the cost of the transmission line 

itself.   

 

Fischbeck and Vajjhala (2006) analyse transmission externalities, using four indicators to 

quantify the difficulty of siting large transmission projects (and also other large electricity 

projects like wind power farms): public opposition, regulatory roadblock (projects that 

affects several jurisdictions), environmental constraints (the physical and environmental 

aspects of the site) and system barriers (requirements from other parts of the electricity 

system may reduce the viability of certain projects). They use formal models to quantify 

difficulties related to siting large projects in the USA. When large projects create 

externalities, it will lead to public resistance to the project which in turn makes the 

project a less likely candidate for investment. A similar reasoning is used when analysing 

the potential for wind production along the coast of Norway, where a large fraction of 

viable locations would be located in the very north. This is partly due to the fact that this 

region is more sparsely populated than the coastline in the south, Statnett (2004a).  

 

5.2.2  Transmission investment and transmission enhancement 

The general literature on investments in transmission capacity in electricity markets can 

roughly be divided into two categories, one focusing on the optimal regulation of 

transmission entities, while the other discusses whether investment decisions of 

transmission firms can be analysed, taking the economic model of perfect competition as 

a starting point. 
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The first strand of literature argues that there should be independent, regulated 

transmission operators investing in capacity, owning the lines and operating the network.  

In an early study of the deregulation of the electricity industry, Joskow and Schmalensee 

(1983) discuss various regulatory framework for the transmission system. More recently, 

this literature has analysed various regulatory regimes required to have the regulated 

transmission operators behave as desired. Vogelsang (2005) discusses performance-based 

regulatory mechanisms and their effects, related to short-run as well as long-run 

efficiency.16  

 

The second strand of literature takes the opposite view, that transmission firms can be 

regarded as competitive entities,  assuming that competitive forces between transmission 

firms may provide sufficient incentives for transmission investment (this framework is 

often referred to as the ‘merchant transmission model’).  

 

Hogan (1992) studies how perfectly competitive environments may contribute to an 

efficient level of transmission capacity. Bushnell and Stoft (1996) study various ways to 

define transmission property rights and their impact on transmission investments, see also 

Bushnell (1999). Chao and Peck (1996) discuss how access and pricing policies affect 

efficiency in the market. Recently, this literature has been criticised by Joskow and Tirole 

(2005). They discuss several assumptions underlying the models mentioned above – 

assumptions that are hardly met  in electricity markets – making the merchant 

transmission model less usable. In fact, they argue that the conjectures that profitable 

investment will be undertaken and unprofitable investment will not be undertaken may 

both be wrong.17 Some of the factors listed by Joskow and Tirole are discussed below, 

since some of the factors will also affect generators’ decisions regarding investing in 

production capacity, thus public transmission firms may face similar difficulties. 

 

                                                 
16 For an overview over recent theoretical advances in regulatory theory underlying much of the practical 
regulatory frameworks in electricity, see Armstrong and Sappington (2007). 
17 From the assumptions underlying the theories applied in this literature it can be shown that i) profitable 
investment, satisfying network constraints, will be undertaken and ii) unprofitable investments will not be 
undertaken, see Joskow and Tirole (2005). 
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Lumpy investment: Investments in transmission capacities are not continuous, but rather 

restricted to various (largely) fixed sizes. In a path breaking, early study, Turvey (1969) 

discusses marginal cost pricing in such an environment, with illustrations from the 

electricity industry, while Turvey (2000) discusses access pricing in relation to lumpy 

investment (also in relation to electricity markets). Turvey (2000) discusses the relative 

merits of the American SMD-model (standard market design) and the British net-pool 

arrangement, arguing that the use of system charges in the British model makes this 

framework “score highly with respect to long-run locational incentives.” 

  

Asset specificity: Once an investment in transmission capacity has been undertaken, 

investment costs can be regarded as sunk costs. Williamson (1983) introduced the 

concept of asset specificity and also defined four types, i) physical asset specificity, ii) 

site specificity, iii) human asset specificity, and iv) dedicated assets, where the first two 

types are most relevant here. The analysis of asset specific investments highlights the fact 

that cost before and after investing may differ. When investing in transmission capacities 

in order to meet expected demand for transmitting electricity from new investments in 

generation to load regions, hold-up problems due to asset specificity may arise. 

  

Nodal energy prices may not reflect willingness to pay for energy and reliability. 

Reliability of supply is to a large extent non-depletable in electricity networks and 

competitive market equilibria would most likely be held back by free-riding. Thus, 

reliability has public good characteristics and may therefore not be sufficiently 

incorporated in nodal prices. 

  

Network externalities may not be internalised in nodal prices: When transmission 

capacities are added to an existing network, all flows of electricity are potentially affected 

and therefore also nodal prices (and price differences). Accordingly, investments in 

transmission impose externalities on all other agents (producers, consumers and other 

transmission owners). One way to overcome this problem would be to define a set of 

enforceable and tradable property rights so that investors internalise the effect their 

investments have on other agents. The optimal organisation of such property rights – and 
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whether they can induce a welfare optimising outcome – is currently debated in the 

literature.  

 

Transmission capacity is stochastic: The potential capacity of a line is determined by 

reliability measures (like N-1, N-2 or probabilistic tools). This implies that the potential 

flow over a line is determined by the probability of failure in other parts of the network or 

the potential failure of generation capacities. 

  

Market power: In the models above, all generators are assumed to behave in a 

competitive manner. In quite a few electricity markets, market power among generators is 

seen as an important impediment to efficiency.18 Accordingly, prices would not equal 

marginal cost of production. In relation to the debate on investments in transmission, 

market power is important since low transmission capacity between regions may increase 

regional market power exertion. 

 

System operators may have discretion to affect transmission capacities: System operators 

have substantial leeway for affecting transmission capacity. In real electricity markets, 

system operators may reduce capacity on a transmission line due to congestion in another 

part of the system. Further, in extreme situations system operators may i) add to 

production and/or reduce demand. In some jurisdictions, system operators may also 

reduce the voltage-level, effectively reducing demand. Such measures may negatively 

affect incentives to invest in generation capacity if not handled properly.  

 

 
6. Interdependencies between investment in production and 
transmission 
 
In section 5 we discussed optimal investment in electric power production and 

transmission separately, emphasizing, though, that the two parts of the electricity system 

                                                 
18 See for instance Green and Newbery (1992), Amundsen and Bergman (2002), von der Fehr and Harbord 
(1993) and the references therein. Skaar and Sørgard (2006) and Johnsen (2001) discuss market power in 
the Norwegian electricity wholesale market. For a comprehensive survey of market power and market 
dominance in electricity markets, see Hope (2005). 
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are closely interrelated and interdependent. The transmission system is of fundamental 

importance as a vehicle to facilitate market-based transactions and efficient price 

formation in competitive electricity markets, and new investment in the system may 

change the efficient functioning of it in this regard, if this relationship is not sufficiently 

understood and taken into account by the transmission system planner or by the system 

operator. Likewise, investment on the production side may change the composition of the 

power generation mix over different generation technologies or the regional distribution 

of the production system. E.g. 

investment in generation facilities may change the ratio of production to demand 

significantly in one region, demanding increased export capacity from that region, or 

alternatively, relieving congestion. Public policies toward renewable technologies, e.g. 

wind power, may add to variations in regional production-demand ratios, not only by 

contributing to investments in generation capacity in one region, but also by reducing 

incentives for investment in other regions.  

In order to overview and integrate interdependencies between investment in power 

production and transmission, one needs to undertake a full system design approach to the 

electric power 

system. An example of such an approach is Wu et al (2006). Their figure 2 summarizes 
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neatly the aspects that have to be considered and analyzed when deciding on an optimal 

investment or optimal investment plan for the transmission system, due to 

interdependencies between generation and transmission. 

 

Any additional generation capacity connected to the network will to a certain extent 

affect both the price of electricity and the flow of electricity on potentially all 

transmission lines on the grid. However, it is not only the increase in total generation 

capacity that matters, but also, as mentioned, the effect of a given investment in 

generation on the composition of the production system across generation technologies as 

well as the impact on the regional distribution of generation capacity in relation to 

capacity of the transmission network. Therefore, such aspects should, in principle be 

taken account of in an optimal investment plan for the power system as a whole, as 

illustrated above in the figure by Wu et al. Likewise there may be several investment 

alternatives in the transmission network to accommodate a given demand for new 

network capacity, so that the composition mix of new investments adding optimally to 

the increase in transmission capacity has to be considered. We will not go into such 

issues in this survey, but concentrate on the “vertical” interdependency between power 

production and transmission.19 

 

As noted repeatedly above, investment in transmission capacity has impacts on 

investment in generation. Both reliability of supply and the potential for transmission 

constraints would affect generators’ profitability, either positively or negatively. 

Investment in transmission capacity affects all relative prices and most likely the 

expected level of prices in electricity markets. Also, optimal access charges for 

connecting to the grid will affect the decision to invest. Thus, generators must foresee 

                                                 
19 For an overview of some aspects, particularly with regard to investment in wind power or other 
intermittent power technologies, see Skjeret (2008). For a discussion of generation technology mix in 
competitive electricity markets, see Glachant (2006). 
Contributions from other strands of literature, e.g real option and contract theories, to the analysis of 
investment in market-based electric power systems, incorporating the inherent uncertainty underlying 
investments decisions and the interdependencies between investments in such systems, requiring a dynamic 
framework of analysis, are not covered here. For an application and discussion of real option theory in 
relation to electric power investment, see e.g. Botterud and Korpås (2005), Kjærland (2007) and Stoft 
(2006).  For an overview of contract theory, see Bolton and Dewatrapoint (2005). 
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investment in transmission when determining optimal generation investment. The 

planning regime that is in use by the transmission operator is thus an important tool for 

generators when determining how much to invest in a specific technology and in a 

specific region. 

  

Increased transmission capacity may also contribute to increased reliability of the overall 

transmission system. As discussed in Joskow and Tirole (2005), this may reduce the 

uncertainty related to stochastic transmission capacity thereby increasing the incentives 

for investments in production capacity. As a consequence, investing in transmission 

capacity for enhancing reliability of the transmission network reduces the uncertainty 

facing generators, thereby potentially increasing incentives to invest. What is more, 

transmission capacity affects market power exertion, most likely negatively. Thus, the 

potential of being capped from the market – as in Cardell et al (1997) – is most likely 

reduced when transmission investments are undertaken.  

 

Sauma and Oren (2006) also study how investment on the transmission side potentially 

affects investment on the generation side. They use a three-stage model to analyse how 

transmission investment affects incentives for investment in generation capacity. In the 

first stage, investment in transmission is undertaken, then generating firms choose their 

optimal level of investment in generation capacity, and finally, the generation firms 

compete in the spot market for electricity, where the spot market is characterised by 

nodal pricing. One of their main conclusions is that investment in transmission capacity 

has potentially large distributional impacts. They apply their framework for the Chilean 

market (32 node system), illustrating that proactive planning differs from reactive 

investment decisions even in a three-period model of an electricity system.  

 

Joskow (2006) examines alternative institutional arrangements in relation to the 

governance, operation, and maintenance of networks. He considers investment in 

transmission capacity in relation to opportunities and incentives to reduce congestion 

losses and investment rationalised by reliability criteria. He argues that reliability rules 

play a much more important role in transmission investment decisions today than do 
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economic investment criteria as depicted in standard economic models of transmission 

networks. However, he also states that economic and reliability-based criteria for 

transmission investment are fundamentally interdependent. If these interdependencies are 

ignored, it will have adverse effects on the efficiency of investment in transmission 

infrastructure, undermining the success of electricity market liberalization.  He draws two 

implications: “(a) we need to better understand the economic justification (costs and 

benefits) for these reliability criteria and (b) economic models of transmission investment 

need to take into account the factors that create a need for reliability criteria and the 

impacts of reliability criteria that are applied in practice.” 
 

 

7. Will optimal investment occur? Some reflections 
 
The literature survey in sections 5 and 6 has identified several potential causes why 

investment in a market-based electric power system will not necessarily be optimal in 

terms of a) capacity expansion, b) composition of the production mix of generation 

technologies in relation to the structure and variability of demand, c) location of new 

production facilities in relation to the transmission network, d) the composition of the 

portfolio of transmission network assets to secure reliability of delivery of transmission 

services and e) the optimal functioning of the transmission network as a “market” in 

relation to competitive electricity markets, including e.g. the handling of transmission 

network constraints in the short run and optimal investment in the elimination or 

reduction of such constraints in the long run. Some lessons and insights can be drawn 

from such a survey with regard to market and system design and implementation to 

achieve optimality, but a survey cannot, of course, in itself assess how much, in a given 

situation, the actual flow of new investment deviates from the optimal flow. This requires 

an empirical efficiency analysis of investment behaviour in a specific case. 

 

In this section we will reflect on some lessons and experiences that may be drawn with 

regard to optimal investment in electric power systems, partly on the basis of the 

literature survey, but also on some potential causes for market failure in power markets 

and systems that are not specifically covered in the survey. This will necessarily have to 
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be done in a summary fashion. We start with the production and end-user parts of the 

power value chain, or competitive parts, and then the network part, recognizing the 

interdependences between them, as discussed above, and then some remarks on 

investment for energy security and system reliability purposes. 

 

7.1 Investment in competitive power markets 

Four issues or causes of market failure seem to be of particular importance here, i.e. a) 

economies of scale in generation technologies and economies of scope in the composition 

of the production mix of generation technologies, b) exercise of market power, c) 

externalities in the production and use of electricity, and d) information asymmetries on 

the end-user side. 

 

7.1.1 Economies of scale and scope 

Economies of scale as a potential market failure factor is dependent upon the size of the 

relevant power market area in relation to the optimal scale of the investment in question, 

which again is dependent upon the form and degree of market integration, where the 

power network capacity and facilities spanning the market play a crucial role. The 

accommodation e.g. of the new 1600 MW Finnish nuclear power plant into the market, 

on the assumption that 1600 MW is the optimal scale of plant, will have to be assessed 

quite differently from an investor and economic efficiency perspective whether this 

investment is considered in relation to an isolated Finnish power market or to a fully 

integrated Nordic market or even to a wider integrated European market. In general, 

economies of scale in power production, considered in isolation, do not seem to an 

important source of failure in power investment markets under the present degree of 

market integration.20 

 

Economies/diseconomies of scope with regard to the composition of generation 

technologies in the overall production system has gained increased importance and 

attention as a consequence of the push for introducing new renewable power 

technologies, e.g. wind power, into the system, driven to a large extent by environmental 

                                                 
20 For some discussion see e.g. Leveque (ed.) (2006) and Jamasb et al (eds.) (2006). 
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concerns and political stimuli. Because of the inherently intermittent nature of such 

production technologies, their introduction into the power system raises a number of long 

term investment as well short term operational issues with regard e.g. to the size, form 

and location of the investment (e.g. clustering of wind farms in a location), generation 

scheduling, frequency management, stranded costs or the decommissioning of assets in 

the established system as a consequence of the introduction of the new renewable 

technologies, etc, which basically is a question of economies or diseconomies of scope 

across generation technologies in the optimal composition of the production mix in 

relation to demand.21 However, it is also a question in relation to the structure and 

regulation of the transmission network, e.g. regulated access charges to the network to 

facilitate the introduction and use of renewable power; see Subsection 7.2 below. 

 

7.1.2 Exercise of market power 

Exercise of market power is a serious potential source of market failure in electric power 

markets, because of the properties and characteristics of electricity in market terms and 

the generally high degree of market concentration in electricity markets.22 

 

In investment power markets the exercise of market power can take many different 

forms. It can be used strategically to block or pre-empt entry to the market in the form of 

competitive new investment from market entrants, it can be used to withholding capacity 

to raise prices and then also lowering them strategically to deter entry, it can be used to 

distort the optimal composition of the production system by exercising market power 

discretionally between generation forms, e.g. between thermal and hydro power, it can be 

used under vertical integration, without full unbundling between generation and network 

activities, to distort competition and investment by cross-subsidization, to mention some 

forms.23 

 

While the scope for the potential exercise of market power may be a serious cause of 

market failure in power markets, is the actual exercise of such power a problem in the 

                                                 
21 For an overview and discussion, see Skjeret (2008). 
22 For an overview and discussion, see Hope (2005). 
23 For a discussion of (ownership) unbundling, see Pollitt (2007). 
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short term for power markets in general and in the long term for investment power 

markets in particular? In the end, this is a question whether there is a “policy failure” in 

the design and efficient enforcement of the competition policy regime in relation to 

electricity markets. E.g. if the actual enforcement is not sufficiently strong and active to 

prevent the exercise of market power in the relevant market, or the enforcement power of 

the competition policy regime is split up or insufficiently coordinated among (national) 

jurisdictions in an integrated, common electric power market, this may result in weak 

policy enforcement.24 

 

7.1.3 Environmental effects of production and consumption of electricity (externalities) 

This is a huge and complex area and probably the one that is most in focus in the political 

and public debate. In the present context one set of issues relates to the identification and 

valuation of environmental costs of production and consumption of electricity in 

investment analysis and decision making. Another set of issues concerns the design and 

selection of instruments and mechanisms, and their properties, for the efficient handling 

of environmental effects of power production and use; in particular, the design and 

operation of environmental markets, like emission quota markets and “green” certificate 

markets, and their properties in relation to other environmental policy instruments, e.g. 

environmental taxes. A third set relates to more long term investment issues, e.g. how to 

realize a future low-carbon electric power production and consumption system, mainly 

because of potential harmful environmental effects of green house gas emissions from the 

use of fossil fuels in electricity production, by means of environmental policy stimuli.25 

 

The design and implementation of existing environmental markets, like e.g. the European 

Emission Trading Scheme (ETS) and the Swedish certificate market26 for renewable 

power, have been subject to flaws and problems in the formative stages, resulting in 

                                                 
24 The Nordic competition authorities have recently published jointly a comprehensive and interesting 
report on investment for an efficient Nordic electricity market. See Nordic Competition Authorities (2007). 
See also Nordic Competition Authorities (2003). 
25 See e.g. Jamasb et al (2008). 
26 A common Swedish/Norwegian certificate market was planned, but has not realized yet. Discussions 
between Swedish and Norwegian authorities have, however, been resumed. 
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inefficient performance. However, the performance seems to be improving due to various 

regulatory interventions and design improvements.27 

More important than imperfectly functioning environmental markets to explain why the 

environmental policy towards GHG emissions and other environmental effects of energy 

use in the electricity sector may have fallen short of stated policy objectives, however, 

has been a lack of consistency and stability over time in the environmental policy 

framework, resulting in uncertainty and in lack of predictability for investors with regard 

to investment cost and timing and form of investment. A relevant case could e.g. be the 

Norwegian policy approach to investment in gas fired power plants and the various 

solutions advocated for CO2 sequestration and storage in connection with the 

investments, where policy consistency and predictability over time have been relatively 

weak. 

 

7.1.4 End-use investment 

The analysis of investment in competitive power markets has to a large extent been 

concentrated on the production side, while the potential for efficiency gains from new 

investment and innovation may be even larger on the end-user side. There are two main 

issues or problem areas to be considered here in relation to optimal investment. 

 

One set of questions relates to improving the design and operation of retail electricity 

markets and activating the demand side to make it more responsive to changes on the 

supply side, e.g. in relation to supply shortages or obtaining better capacity utilization of 

production facilities. Relevant measures could be to implement real time pricing 

mechanisms, developing risk-sharing contracts between producers and consumers, 

investing in two-way communication systems between producers and consumers, 

investing in smart metering technologies,28 etc. Investment in decentralized, small-scale 

production systems for electric power close the consumers, e.g. micro-generation, would 

also fall within this area. 

 

                                                 
27 See a.o. various reports and documents from the EU Commission wrt the ETS, e.g. Ecofys (2006). 
28 See e.g. Owen and Ward (2007). 
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A second set of issues relates to various kinds of information barriers for the optimal flow 

of investment on the end-user side, which can be grouped under imperfect information 

barriers and asymmetric information barriers between producers and consumers, 

respectively. These information barriers are to a large extent due to the long-lived nature 

of many types of investment on the end-user side, e.g. in houses/buildings, where the 

economic lifetime of such investments typically is much longer than the planning time 

horizon of the end-users, and where investment in energy/electricity facilities, and their 

operating costs, account for a relatively small share of the total investment and operating 

costs of such buildings. 

 

Many developments are taking place in this area, partly with the purpose of improving 

information to end-users and partly by promoting the energy performance of buildings by 

introducing various forms of energy efficiency standards and measures. This can be 

exemplified with two EU Directives issued by the Commission, i.e. the Energy 

Performance and Buildings Directives (EPBD) (2003) and the Energy End-Use 

Efficiency and Energy Services Directive (ESD) (2006)29, respectively. 

 

The EPBD is designed to promote the energy performance of buildings in Member States 

through: a) the introduction of a framework for an integrated methodology for measuring 

energy performance; b) the application of minimum energy performance standards in 

new buildings and certain renovated buildings; the energy certification and advice for 

new and existing buildings; and c) the inspection and assessment of boilers and 

heating/cooling systems. The purpose of the ESD is to encourage energy efficiency 

through the development of a market for energy services and the delivery of energy 

efficiency programmes and measures to end-users. There are a number of problems with 

the implementation and enforcement of the Directives, but they represent interesting 

efforts and approaches to cope with information barriers with regard to investment and 

operation of information services for energy on the end-user side. 

 

                                                 
29 The ESD has a wider coverage than just buildings, but is highly relevant for them. 
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7.2 Investment in electric power networks 

Even though they are interrelated, a distinction can be drawn between the optimal 

structure and organization of the electric power network on the one side and the optimal 

regulation of the network as a natural monopoly on the other.30 The literature survey in 

sections 5 and 6 covered many questions and issues relevant for optimal network 

investment decisions with regard to both network structure and regulation. In this section 

we will list in a summary fashion some factors and issues that have to be taken into 

consideration, primarily when deciding on investing in the optimal structure and 

organization of the network, while Subsection 7.3 will be devoted to a brief discussion of 

the relationship between security supply of power and regulation of electric power 

networks in liberalized power markets. 

 

7.2.1 Network structure and organization 

• The network as a natural monopoly 

o Technical properties and characteristics of network functions and services, 

physical power flows, network externalities, system effects, etc. 

o Identification and demarcation of natural monopoly functions; relationship 

between natural monopoly services and ancillary network services 

o Extent of natural monopoly in network; one monopoly or hierarchy of 

natural monopolies 

• Network organization 

o Overall network structure and planning system 

o Division of labour and responsibility between overall network planning 

system and network investment and operation decisions 

o Degree of decentralization of network functions and investment decisions 

in the network organization 

o Ownership of network assets and facilities; public versus private 

ownership; merchant transmission investment; allocation of property 

rights; investment decision criteria 

                                                 
30 See von der Fehr, Hagen and Hope (2002). 
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o Transmission system operator (TSO) versus Independent system operator 

(ISO) organization; implications for investment decisions 

o Network organization in regionally integrated (multi-country) power 

markets; overall regional network planning and decision-making system 

o Network organization for the integration of other energy networks with the 

electric power network; multi-utility network organization. 

• Network functions 

o Identification of network capacity constraints in meshed networks 

o Methods for the handling of network capacity constraints; properties of 

different methods; relationship between capacity constraint handling and 

capacity investment. Harmonization of principles and rules for the 

handling of capacity constraints in spatially integrated networks and 

power markets 

o Methods and criteria for evaluating optimal network investment; short-

term versus long-term considerations and decisions 

o Location decisions with regard to generation capacity in relation to 

network load and demand for power 

o Implementation of an optimal investment programme for the total 

network; division of labour and responsibility in decision making between 

involved parties, vertically and horizontally, and also for spatially 

integrated power markets 

• Network regulation 

o Choice of regulatory mechanism with desired properties, short and long 

term, and timely revision of the regulatory model under changing 

circumstances, with special attention to the incentive properties of various 

mechanisms to contribute to optimal investment in the electric power 

system as a whole 

o Harmonization of regulatory models and procedures in spatially integrated 

power markets 
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o Choice of “global” regulatory model to facilitate the integration of the 

electric power network with other energy networks, e.g. natural gas, if 

desired. 

 

The list could have been made even longer, but covers the main factors that have to be 

considered from the network side with regard to the structure, organization and regulation 

of the electric power network to facilitate optimal network investment. 

 

7.3 Security of supply and regulation 

A number of different definitions and conceptions of security of supply of energy 

(electric power in this context) have been presented in the literature and in official policy 

documents, often focusing on security of physical supplies and often with reference to the 

upstream part of the power system (production).31 Related concepts to security of supply 

are system reliability and supply adequacy.32 

 

Security of supply of a defined electric power system has characteristics of a public good. 

There may also be global public goods aspects of the production and use of electric 

power, e.g. global climate change effects of GHG emission from fossil-fuelled electricity 

plants, or global security issues over and above energy security from nuclear power 

production, e.g. resulting from the handling internationally of nuclear material as input to 

and waste from nuclear power production. These aspects will not be discussed in the 

present context.33 

 

The optimal provision of security of supply will not be secured and some form of 

regulation is required. How should this regulation be designed for liberalized electric 

power markets and, in particular, what role will the power network and the regulation of 

                                                 
31 For an overview, see Egenhofer at al (2004), who also propose definitions of security of supply for 
market-based electric power systems.  
32 A Working Group of the CEER (2005) defined security of supply as: “Customers have access to 
electricity at the time they need it with the defined quality”. Reliability is defined as: “System operation 
without interruption and disturbance within the defined period.” For definition of supply adequacy, see 
section 5 above. 
33 For discussion of global public goods in an energy context, see Barrett (2007). For a more general 
exposition, see Sandmo (2007). 
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the network play in achieving security of supply?34 We will make a few observations on 

this question. 

 

Egenhofer et al (2004) suggest that, in liberalized energy markets, the role of 

government, companies, and consumers change and, therefore, supply security should 

rather be redefined in terms of risk and associated costs. “In this logic, security of supply 

becomes a risk-management strategy with a strong inclination towards cost-effectiveness, 

involving both the supply and the demand side”. In this context the strategic role of the 

electric power network and its regulation becomes important.  

 

The primary role of regulation of networks in improving security of supply in market-

based power systems are (section 3): a) attracting sufficient investment, b) promoting 

adequate maintenance of existing facilities, c) promoting efficient operation of network 

infrastructure, and d) ensuring adequate rewards for innovation and technological 

progress, by building into the regulatory model incentives for such outcome. However, 

because the security of supply concept under the above approach becomes a multi-

dimensional concept, regulators have to make choices about incentives which may have 

precise impacts on some of the components of security of supply but not on others. 

 

A case in point may be the introduction of capacity payments for generation capacity in 

some electricity markets, e.g. the PJM market in the US35 and access charges for 

intermittent renewable power.36 The access charging methodology is important for the 

allocation of network access and usage costs between the existing and new connections 

that have to be established e.g. for the introduction of new renewable power into the 

system.  

Two factors seem to be of particular importance with regard to achieving acceptable and 

cost-effective solutions for security of supply through network regulation: 
                                                 
34 Many of the recent power system failures in the form of blackout or brownouts have come from the 
network side, e.g. in Italy in 2006. 
35 See e.g. Joskow (2006) and Bowring (2008). In the UK auctions have been introduced for peaking 
capacity at times of maximum electricity demand; see e.g. JESS (2006) for the UK. In Norway the 
regulation capacity market represents an interesting case, taking account of capacity factors on both the 
supply and demand sides. 
36 See section 5. 
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• Design of regulatory mechanisms with incentives to stimulating innovation and 

technological progress in the power network. Technological progress has been 

relatively slow in the electric power network, but many interesting innovative 

developments are now taking place. Decentralized power systems with multiple 

small scale sources of generation like micro-generation, location of new 

generation capacity in relation to the network, smart meters, two-way 

communication systems, as mentioned above, are examples of such innovations.37 

On the other hand, the macro security of the network should always be 

considered, because failures or breakdowns in the high-level parts of the network 

can have very serious consequences for system security and stability. 

• Integration of different energy networks (electricity, natural gas, systems for 

distributed gas, district heating networks, etc) and “global” regulation of the 

networks on a common basis are important for securing energy security for the 

energy system as a whole. 

 

Will this perspective on security of supply and innovations taking place in the network 

change the public goods aspect of security of supply to the extent that it can be left to the 

energy markets to set the level of security of supply, without network regulation in this 

regard, also taking into account that regulation will never be perfect in relation to stated 

regulatory objectives? At the present state-of-art, this is definitely not so. However, the 

“core” of natural monopoly in the network seems to be shrinking due to these 

developments so that well-functioning energy markets will gradually have a larger role to 

play in securing energy security. 

 
 
8. Concluding remarks 
 
A state-of-the-art research paper will, necessarily, have to be “static” in the sense that it is 

supposed to take a bird’s eye view of the state of the art of scientific analysis and 

thinking within a given area at a point in time. Optimal investment in market-based 

electric power systems is one of the most complex and challenging set of issues presently 
                                                 
37 See e.g. Patterson (2007) for some discussion of the potential for network innovations. 
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facing us in energy economics research and also with regard to the operational 

implementation in market design and regulation. Therefore, a brief state-of-the-art 

research paper like this cannot do proper justice to all the issues and problems that have 

to be considered. However, we hope that the paper has shed some light on the issues and 

has helped to identify some of the most important factors and aspects that have to be 

taken into account in research design to make further knowledge-based progress in this 

area, as well as for improvements in market and regulatory designs to secure optimal 

investment. 

 

Progress is indeed taking place. We end by quoting a statement by Michael Pollitt to the 

book edited by Fereidoon Sioshansi (2008). This collection of studies was published in 

February 2008, which also represents the time of closure of this state-of-the-art research 

study. 

“Electricity liberalization continues to be one of the longest running and most interesting of multi-country 
microeconomic experiments. While most of these market reform initiatives are ongoing, some are mature 
enough to no longer be experiments, and many others have been running long enough to give rise to 
preliminary results. Economic analysis is well served by well-informed and detailed analyses of these 
experiences, such as appear in this volume.” 
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