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Abstract

A non-traditional approach of fitting dynamic resource biomass models to data is developed in this
paper. A variationa adjoint technique is used for dynamic parameter estimation. In the variationa
formulation, a cost function measuring the distance between the model solution and the
observations is minimized. The data assimilation method provides a novel and computationally
efficient procedure for combining al available information, i.e., the data and the model in the
analysis of aresource system. This technique will be used to analyze data for the North East Arctic
Cod Stock.

Two dternative population growth models: the logistic and the Gompertz model are used for
estimating parameters of simple bioeconomic models by the method of constrained least squares.
Estimates of the parameters of the models dynamics are reasonable and can be accepted. The main
inference from the work is that the average fishing mortality is found to be significantly above the

maximum sustainable yield (MSY) value.



1 I ntroduction

In spite of the growing criticisms of the biomass dynamics models or the surplus growth models
(Clark, 1990), they remain the biologica basis for most bio-economic anaysis. Parameter
estimation has been the greatest source of difficulty in applying the generalized biomass dynamics
models in management schemes (Rivard and Bledsoe, 1978). The bulk of the research in this area
has been done by fishery biologists in the past. Several methods have been developed for fitting
these models to observed data. Three approaches have been commonly used to fit surplus
production models to observations. effort averaging methods, process-error estimators, and
observation-error estimators (see Polacheck et a., 1993).

The technique applied in this paper is a variationa method for dynamic parameter estimation
(Lawson et al., 1995; Smedstad and O'Brien, 1991). The variationa adjoint technique determines
an optima solution by minimizing a cost function, which measures the difference between the
model solution and the available observations. This method has many advantages compared to the
traditional approaches used in fitting surplus production models. First, the technique is a dynamic
approach while the ordinary regression used previously is static. Second, it can be applied to both
linear and nonlinear models and does not require that nonlinear models be transformed into linear
models, as is often the case in traditional regression. It is also computationally more efficient
compared with the finite difference method. Recent applications of data assimilation techniques to
biologica and ecosystem models are Lawson et al. (1995), Spitz et al. (1998) and Matear (1995).
To emphasize the advantages, we further point out that this technique can easily be used to estimate
systems of dynamic equations that include feedback for discrete or continuous economic models.
Interested reader may refer to the works of Lawson et al. (1995) and Spitz et d. (1998), which are
applications to complex biologica and ecosystem system models and Ussif et al. (2001).

Two forms of the existing growth models (Clark, 1990) in combination with a simple proportional
exploitation rule will be used to estimate the biological and economic input parameters, such as the
fishing mortality using, rea data for the North-East Arctic Cod stock (NEACS). Notice that the
biomass model is used only as an example and could be replaced by any model. The bioeconomic

model employed in this analysisis simple. It combines surplus growth models with a linear harvest



function to analyze the data. The biological functions contain parameters that are very crucia in
determining certain important quantities of interest to fisheries managers and researchers. Estimates
of parameters such as the intrinsic growth rate and the environmental carrying capacity of the
population are rare for some important fish stocks around the world. Accurate measurement of
these parameters is in fact very difficult if not impossible. As a consequence, quantities of
considerable importance to management, such as the maximum sustainable yield (MSY), are

unreliable.

The goals of this pagper are to demonstrate the potentia of the variationa adjoint technique in the
analysis of natura resource systems and to apply the technique to the NEACs for two different
growth models. Thus our focus is on the use of variational assimilation in bioeconomics. The paper
is organized as follows. Section 2 is a brief discussion of the methodology used in the analysis. In
section 3, we present the results of some twin experiments and then discuss an empirica

application of the model. Section 4 concludes the paper.

2 Data Assimilation M ethods

In this paper, the variationa adjoint technique will be employed to fit the dynamic resource models
to the observations. It consists of three components: the forward model with the definition of a cost
function, the adjoint or backward model and an optimization procedure (Lawson et a., 1995). The
forward mode is the bioeconomic model e.g., an open access or a sole owner fishery model. The
adjoint model consists of equations that provide a method of calculating the gradient of the cost
function. The gradients are then used in aline search using standard optimization procedures to find

the minimum of the cost function.

2.1 Thecost function

One of the magjor components of data assimilation techniques is the choice of the estimator. Many

attractive estimators exist, however, the least squares estimator has been the most popular among



researchers mainly due to its simplicity and mathematical convenience. The least squares fitting
criterion is defined as

J = (X= X)W, (x=X™*) +(p— po) "W, (p— P,) (N

where x is the prediction of the model, x** is the observed or measured quantity, pand p, are the

parameter and its estimated vector respectively, the W's are the inverse of the measurement error
covariance matrices, i.e., the weighting matrices which are assumed to be positive definite and
symmetric, and T denotes the transpose operator. We further assume that these matrices are

W =w.|, wherel is the identity matrix. The penaty term on the parameters will increase the

chance that the cost function becomes convex. This may be helpful in reducing the flat regions in
the cost function and may improve the convergence to the minimum (see Smedstad and O'Brien
1991). In al the experiments we will set wy = 1.0 which means that al we have to choose are the
weights w, on the parameters. If the model parameters are more uncertain than the observations
then greater penalty is imposed, i.e., they are given less weight and vice versa. Complete lack of
prior knowledge of the parametersimpliesw, = 0.

2.2 Derivation of the adjoint model

Minimization of the cost function J subject to the dynamics is a constrained optimization problem
(Luenberger, 1984; Bertsekas, 1982). An efficient' technique for the minimization of the cost
function is the variationa adjoint method. It consists of transforming the constrained problem into
an unconstrained optimization problem via the use of the undetermined Lagrange multipliers. The
adjoint equations are used to compute the gradients of the cost function. It is then possible to use a
gradient search method to find model parameters that yield predictions which are as close as
possible to the observations. To illustrate the numerical procedure, we use the discrete dynamics.
The reason is to avoid using the more complex language of functional analysis. Not that this has the
advantage that the equations derived are simply the equivalent of what isin the computer code.

The dynamics are thus

! In comparison with cal culating the gradients using finite difference approximation.
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where N is the number of observations in time, p a vector of parameters to be estimated and dt is

the time step. The discretization scheme used is a simple forward difference scheme. The discrete
form of the Lagrange functiona is constructed as follows
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where A, is the value of the multiplier at time step n and N, is the number of parameters. The first
order conditions for the minimaare
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where g—l‘ is the derivative with respect to the i parameter and 99 is the partial with respect to
P ox

n

X
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It is immediately seen that equation (8) recovers the model dynamics, i.e., the forward model,
equation (9) gives the backward model forced by the model-data misfits and equation (10) is the
gradient with respect to the parameters. To find the model parameters that give model forecasts that
are as close as possible to the observations using the classical search algorithms, correct vaues of
the gradients are required. Methods for verifying the correctness of the gradient are available both
numericaly and anaytically where possible (see, Spitz et al., 1998; Smedstad and O'Brien, 1991).
We have in this paper checked al gradient caculations to ensure reliable parameter estimates. The
optimization procedure used for the minimization is the quasi-Newton procedure developed by
Gilbert and Lemarechal (1991).

3  TheDynamicsof the Biomass

Most of the fisheries economics literature has been based on the simplified population dynamics
models of the Schaefer type (Sandal and Steinshamn, 1997; Clark, 1990), and it is apparent that
these models will continue to be used for some time. While efforts are underway in the
development of more complex models, it is appropriate to explore techniques of identifying the
inputs of the existing models. The surplus production model, though very simple, can represent
quite good agpproximations of the complex dynamics. A continuous surplus production mode is

applied in thisanalysis. The basic form of the mathematical equation is

% ~ g(x-h (11)

where x(t) is the biomass at time t, h(t) is the rate of depletion of the population due to human

activities, e.g., commercial and recreationd fishing, g isthe natural additions to the biomass.



3.1 Thenet growth models

Two variants of the growth model are considered in this paper. The structure of their growth is
quite complicated requiring sophisticated mathematical functions to adequately model them.
Fortunately, there are simpler models that reasonably and approximately represent the intricate
growth models. The two growth functions used in this paper are

X
rx@——)
g(x) = K

rx| n(;)

where X is as defined previously, r per year is the intrinsic growth rate of the population, K in kilo-
tons is the maximum population level? of the biological species. The first is the logistic growth
which is a special case of the modified logistic when the exponent is unity (Clark, 1990, Eggert,
1998) and the second is the Gompertz growth function.

The production function h for a resource industry can be assumed to depend on the stock biomass
and the effort expended in fishing (see Clark, 1990; Eggert, 1998). The simplest form of the
exploitation rate is the Gordon-Schaefer type of production function where the rate of removal of
the stock is assumed to be linearly related to the effort and stock size. That is, h = gex, where e(t) is
the fishing effort and q is the catchability coefficient. The fishing mortality ()2 is in genera a

function of time but for this analysis, we will assume that it is constant. This assumption
corresponds to the assumption of constant effort in bioeconomics. Let f = ge be "loosely defined

as" the instantaneous average fishing mortality rate, then the smple rule takes the form

h(x) = fx, x> X, (12)

2 The carrying capacity is assumed constant in this application which is a simplification in our models. It may be more
realistic to alow it to vary with time.

* Note that this is amathematica simplification. Idedly f should be avariable since efforts are not constant.



where Xo is the least observed or estimated stock. The dynamics thus contain three parameters, r, K
and f. To further explain the above assumption, we point out that, f(t) = h(t)/x(t) by definition.
These values derived from the actua harvest and the estimated stock (see Anon. 1998) have quite
been stable and do not show any significant trend. Hence, we assume that, this ratio is
approximately constant i.e. f is constant. This assumption may be quite reasonable because, it leads
to amore parsimonious model* that includes the key variablei.e. the stock.

In Figure 1 below, we show plots of the growth functions.

The graph of the logistic is symmetric about one half the carrying capacity while the Gompertz is
asymmetric and is skewed towards the left. For the same K and r, the latter predicts lower (MSY)
biomass xusy= (K/e), where e = 2.71 and a corresponding higher MSY. In practical applications,
the Gompertz growth function seems inappropriate for less resilient species. This is because, the
combination of high MSY and low xusy prescribed by this model can result in an unpardonable

mistake on the side of management in case of recruitment failures.

* Notethat h = o. + Bx where o = 0.



Fhase plot of the actual harvest data and estimated growth
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Figure 1: The biomass size is in percent of the carrying capacity and the growth functions are

rescaed by afactor of r timesK.

3.2 Twin experiments

To assess the performance of the variational adjoint method, severa identical twin experiments are
performed, i.e., data generated from the model itself using known parameters of the model are used.

The results are discussed below. Note that, the purpose of the twin experimentsis to test the adjoint
computer code to ensure that reliable estimates are obtained in the rea life application.
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For al the experiments in this paper the convergence criterion for the optimization is

|A3]/|A3,]|<10®, where, AJ and AJ, are the gradients of the current and initial points

respectively and || is the norm operator (see Gilbert and Lemarechal, 1991). For this paper, we

will use the value of r = 0.35 estimated in Nakken (1988). This leaves us with two parameters to
estimate and provides a more parsimonious model. Thus, reducing the problem of overfitting and

identification.

First clean data, i.e., data without any type of noise, are used in the numerica experiments and the
parameters are recovered (Tables 1 and 2). To test the robustness of the a gorithm, we used severa
different initial guesses. In all the cases the parameter recovery was accurate to more than four
orders of magnitude (Tables 1 and 2). The only difference was in the number of iterations, which
increased as we depart from the true values. The optima value of the cost function in these
experiments is zero because the simulated observations are exactly consistent with the model
solution. However, in a more redistic situation the data may not be consistent with the model

solution and the minimum of the cost function can be expected to be greater than zero.

Logistic
Parameters | ¢=0.0 | 0=0.001 | ¢=0.01
K 1.000000 | 0.992734 | 0.931131
F 0.174999 | 0.174099 | 0.165910

Table 1: Results of twin experiments with r = 0.35. The true parameters are K = 1.0 and f = 0.175.
The weights used are w = 1.0 and w, = 0.0 and o is the standard deviation of the measurement

errors.
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Gompertz

Parameters | 0=00 | 0=0.001| ¢=0.01
K 0.999999 | 1.000094 | 1.000917
f 0.349999 | 0.349739 | 0.347374

Table 2: Results of twin experiments with r = 0.35. The true parameters are K = 1.0 and f = 0.35
and ¢ ° is the standard deviation of the measurement errors. The weights used are w = 1.0 and wj, =
1.0 that is we are assuming that our prior knowledge of the data and the parameters is equal. Note
that the Gompertz function is highly nonlinear and hence has nonquadratic cost function. By
penalizing the parameters, we increase the chance that the cost function becomes convex.

For the experiments above, the data input for the assimilation were assumed to be perfect, i.e.,
random and measurement noise were not included. This is however the most ideal situation one
may assume. Next we investigate the effect of imperfect measurements because rea data are
inherently noisy. Similar experiments as in the case of noise free data are performed; this time with
random noise included in the data. The data are generated by x®® = x+ ¢, wheree is assumed to
be normally distributed with zero mean and constant variance. The level of noise was varied in
order to evauate the degree to which the noise affects the recovery of the true parameters. The
recovery of the parameters was quite good except that the precision of the recovered parameters
and the convergence of the conjugate gradient method were slightly affected (see Tables 1 and 2).
The accuracy decreased while the number of iterations increased with increasing amount of noise.

The results are not surprising because the model and the data are somewhat consi stent.

3.3 An Application to North-East Arctic Cod Stock

The NEACs is the most important demersal species along the coast of Norway and Northern
Russia. This fishery has played an important economic role within the coastal communities for the
past thousand years. The NEACs has for the past half century experienced large variations which

result in corresponding variations in the annual harvest quantities. The stock size fell from its

® Note that random variates from unit normal can take vaues between negative and positive infinity. Thus, that a
smaller sigmamay help keep the simulated values between zero and one.
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highest level of 4.1 million tons in 1946 to its lowest level of 0.75 million tons in 1981. Time series
plot of the history of the stock indicates signs of recovery from its worst state around 1990, but
recent reports show that the fishery is again in deep trouble (see Figure 2 below).

Fhase plot of the actual harvest data and estimated growth
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Figure 2: Source: ICES 1998. Graph of actua harvest and the stock biomass. Note that this shows
the assumed relationship between the harvest and the stock. The data is for the period of 1946 -

1996.

In this study, atime series of observations from 1946 to 1996 is used. The data set is obtained from
the ICES 1998 report (see Anon., 1998). The variationa adjoint method is used to fit the
hypothesized dynamics to the observations. The NEACs provides a good example for testing the
data assimilation method because biomass model s have previously been used to anayze this fishery
(see Naken, 1988).
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The optimization was started by randomly generating reasonable initial guesses for the parameters
using a uniform random deviate intrinsic function. By seeding the generator, different initia
guesses were used to check for the presence of local extrema. Note that the use of the uniform
distribution is for computational ease.

A surface plot of the logarithm of the cost function for the logistic model in space of the two

estimated parameters for the logistic model is shown in Figure 3.

Graph of surplus growth functions and yield vs. biomass
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Figure 3: A plot of the logarithm of the cost function in space of the estimated parameters (K, f).

The graph is obtained by perturbing the parameters around their estimated values to check if a

minimum is reached. It appears from Figure 3 that the cost function is convex, at least locally, and
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aminimum has been reached. The best fit parameters, estimates of the MSY and xwusy, are shown in
Table 3 below.

Parameters Logistic Gompertz
K 5268.5 (868.3)| 5499.99 (1322.7)

F 0.4076 (0.0579)| 0.4964 (0.1044)

X* msy 2634.5 2023.33
MSY* 460.9 707.96

Table 3: Model parameters for the biomass dynamics models. The units are: f (1/yr) and the rest are

in kilo-tons. The stars represent calculated quantities and standard errors are in parenthesis.

A star in Table 3 indicates that the values were calculated, and the standard errors are given in
parentheses. The logistic and the Gompertz functions tend to give reasonable estimates of the

parameters for the NEACs because they lie within acceptable bounds for this stock.

Point estimates of parameters are usually useful, but, the usefulnessis enhanced if error bounds are

provided. Severa methods for cal culating these uncertainties exist (see, Polacheck et al., 1993 and

Thacker, 1989). The approach used here is a Monte Carlo simulation method where we randomly
generated values for the intrinsic growth rate within a given range and repeated the experiment
many times and the standard deviations were calculated. For this stock, some scientists believe that
the intringc growth rate lies between 0.25 and 0.45. It may also be reasonable to argue that the
carrying capacity is at least the size of the estimate of the stock biomass (4.1 million tons) at the
beginning of the assimilation period which is 1946. At that time commercid fishing hard not taken
place for some years due to World War 1. For this reason, we assume that the carrying capacity
may reasonably lie between 4.1 and 6.5 million tons. In fact, there should be no reason why these
bounds should be absolutely correct. There may be a certain probability that the true parameters lie
outside the estimated bounds. The fishing mortality has at least been equa to the natura growth
rate of the stock since the stock have been declining and its upper bound can be assumed to be no

less than 0.55. These arguments are based on our experience and intuition.
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In figure 4, time series of the actua stock and the model results using the estimated parameters are
displayed. The fit to the data is quite good for both models (Figure 4) with the logistic model
explaining about 55.0 % of the data while the Gompertz function explains about 53 % of the data. It
is observed that the estimates for the latter model are relatively higher than for the former.

Fhase plot of the actual harvest data and estimated growth
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Figure 4: A time series plot of the actual and estimated stock using the optimal parameters.

The plot shows which component of the data is resolved by the models and which is not. As can be
seen from Figure 4, the model has been able to capture the trend in the data but not the stochastic
component. The reason is obvious here because the models are highly aggregated and
deterministic. Next, the growth functions using the estimated parameters are presented on the same
graph as the actual harvest data. Note that the growth models are important components of the
bioeconomic models. By comparing the estimates of the natural productivity of the stock to the
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actua rate of harvesting, we may be able to infer whether the general decline in biomass has been
captured in the growth component of our models. That is, the stock has been exploited at an
unsustainable rate leading to the alarming state of the fishery. Figures 5-6 show plots of the actua
harvest and growth curves against biomass. The plus sign represents the actual harvest while the
solid line represents the estimated net growth for the Gompertz. The logistic growth model predicts
that the harvest rate has been persistently above the net growth curve (see Figure 5 below). At the
lower end of the graph, we notice that the actual harvest is close to the growth curve and is below it
on a few occasions. One interesting observation is that several points tend to cluster around the
MSY. Recall that most real-world fisheries have until recently been managed based on the concept
of MSY. The NEACs is not an exception but most of the data period is characterized by open
access. In most rea world fisheries, the observation is that the stock biomass has generdly been
declining over time which is an indication that the natural productivity of the stock has been less

than the rate of harvesting and hence declining as shown in Figure 4.

The estimates of the latter model, i.e., the Gompertz model, are quite similar to that of the logistic
model because both models have predicted that the fishing mortality has been far too high® and that
the stock size has generaly been declining. It is observed in Figure 6, however, that the actua
harvest has for a large part been less than the estimated natural growth which according to our
model, should lead to an increase in the stock, this is opposite of what has been observed. The
reason is that the Gompertz function is skewed to the left i.e., the growth is faster when the size of

the stock islow.

¢ That isabovetheratethat will leadto MSY . Thesearef = r/2 for Logisticand f =r for Gompertz.
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Flot of the Gompertz function and the actual harvest
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Figure 5: The graph of the logistic growth model using the estimated K and r = .35 vs. the stock
biomass.
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Figure 6: The graph of the Gompertz growth model using the estimated K and r = .35 vs. the stock

biomass.

Note that the Gompertz model seems to overestimate the productivity of the stock biomass and
underestimates the xusy (see Table 3). An important caveat however is that, while these values may
have some empirical significance, we should not overestimate the scientific significance. The
estimates may not accurately reflect the true values due to the large errors in the data and the

simplistic nature of the models.

To further discuss the results of the paper, we provide estimates (e.g., the MSY) that might be of
considerable interest to managers of the NEACs.
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Estimates of xmsy and MSY quantities are shown in rows 4 and 5 of Table 3. The Schaefer-logistic
model seems to outperform the Schaefer-Gompertz model. The former gave alower MSY estimate
but a higher value for the optimal standing biomass. These estimates are quite appeding and are
more acceptable than the estimates of the Gompertz. The 2001 quota recommendation from ICES
is around 263 kilotons which is lower than the MSY estimated for the logistic. The MSY for the
Gompertz is around the values of the Total Allowable Catches (TACs) that have been suggested for
the NEACs in the late 90's (Nakken 1998). These values have turned out to be too high as the stock
biomass has continued to decline. The estimated sustainable biomass level of around 2.0 million
tons for the Gompertz function may be too low. This is because this value is lower than the
estimates of the stock in the mid to the late 90s which is still considered low by some scientists. It
is obvious that the Gompertz growth function does not seem to work well for NEACs because it

overestimates the M SY and underestimates the xwsy.

4 Conclusions

The NEACs is analyzed using constrained optimization for dynamic model parameter estimation.
Two alternative growth models are used in the analysis. The production relation for the fishery is
assumed to be linear in the biomass and constitute a simple feedback rule. A quite restrictive
assumption of constant fishing mortality is made which yields a proportiona fishing policy. The
model dynamics are nonlinear in the parameters and quadratic in the stock. A cost function
measuring the discrepancy between the data and its model equivalent was minimized subject to a
dynamic constraint. The variationa adjoint method is used to efficiently estimate the parameters.
Parameter estimates from the Schaefer-logistic and the Schaefer-Gompertz models are reasonable,
i.e., they are within acceptable ranges. Both models have about the same explanatory power, i.e.,
R’=0.55. This seems quite reasonable since the models were able to capture the trend in the data but
faled to cepture the periodic oscillations (Figure 4). It is obvious that the models are not
sophisticated enough to explain the random events inherent in the system. Ecosystem effects and
environmental variability are very important variables and ought to be included in the model.
Predictions from these models are consistent with recent experiences in fisheries and other natura

resource stocks. Both the stock biomass and the amount harvested have been declining while
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fishing mortality is increasing due to technica innovations. More efficient boats are being
developed and other advanced fishing equipment is available making the stock more vulnerable to
exploitation. This has led to the collapse of some fisheries such as the Canadian Northern cod
fishery (Grafton et al., 2000).

This paper has demonstrated the usefulness of the data assimilation methods in dynamic parameter
estimation. It exposes some of the strengths and weaknesses of the simplified biomass dynamics
models and provides model parameters that are in close agreement with the observations. The
methods have numerous additional capabilities that are worth exploring in the future. For example,
more sophisticated models that include spatia and other ecological interrelations can be calibrated
using this technique. It can dso be used to perform sensitivity andysis (Navon, 1997).
Bioeconomists may find these methods indispensable when the questions that interest managers

most have to be answered and when more realistic models become avail able.
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