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Abstract 
The issue of finding market clearing prices in markets with non-convexities has had a 
renewed interest due to the deregulation of the electricity sector. In the day-ahead electricity 
market, equilibrium prices are calculated based on bids from generators and consumers. In 
most of the existing markets, several generation technologies are present, some of which have 
considerable non-convexities, such as capacity limitations and large start up costs. In this 
paper we present equilibrium prices composed of a commodity price and an uplift charge. The 
prices are based on the generation of a separating valid inequality that supports the optimal 
resource allocation. In the case when the sub-problem generated as the integer variables are 
held fixed to their optimal values possess the integrality property, the generated prices are also 
supported by non-linear price-functions that are the basis for integer programming duality. 
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1. Introduction 

A reason for the renewed interest in obtaining market clearing prices in markets with non-

convexities is the deregulation of the electricity markets that has taken place recently. In such 

markets, the non-convexities arise from start-up and shut-down costs of power plants, and 

minimum output requirements that must be fulfilled in order to run certain plants (see for 

instance O’Neill et al. (2001, 2002) or Hogan and Ring (2003)). Moreover, non-convexities in 

a market with uniform linear prices may contribute to and legitimate strategies like “hockey 

stick” bidding, which may have considerable redistribution effects (Oren (2003)). This may 

also be regarded as an argument in favor of searching for alternative price mechanisms to deal 

with the underlying complications that severe non-convexities may create in a market. 
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As so clearly described by Scarf (1994), “The major problem presented to economic theory in 

the presence of indivisibilities in production is the impossibility of detecting optimality at the 

level of the firm, or for the economy as a whole, using the criterion of profitability based on 

competitive prices.” Scarf illustrates the importance of the existence of competitive prices and 

their use in the economic evaluation of alternatives by considering an economic equilibrium 

(Walras). It is assumed that the production possibility set exhibits constant returns to scale, so 

that there is a profit of zero at the equilibrium prices. Moreover, each consumer evaluates 

personal income at these prices and market demand functions are obtained by the aggregation 

of individual utility maximizing demands. Since the system is assumed to be in equilibrium, 

supply equals demand for each of the goods and services in the economy. A new 

manufacturing technology, that also possesses constant returns to scale, is to be considered, 

and, the question is if this new activity is to be used at a positive level or not. 

 

In this setting, the answer is simple and straightforward, as formulated in Scarf (1994): “If the 

new activity is profitable at the old equilibrium prices, then there is a way to use the activity 

at a positive level so that with suitable income redistributions, the welfare of every member of 

society will increase.” Furthermore, “if the new activity makes a negative profit at the old 

equilibrium prices, then there is no way in which it can be used to improve the utility of all 

consumers, even allowing the most extraordinary scheme for income redistribution.” This 

shows the strength of the pricing test in evaluating alternatives. However, the opportunity of 

using the pricing test relies on the assumptions made, i.e. that the production possibility set 

displays constant or decreasing returns to scale. When we on the other hand, have increasing 

returns to scale the pricing test for optimality might fail, and it is easy to construct examples 

showing this, for instance by introducing activities with start up costs (a very simple example 

is provided in O’Neill et al. 2002). With the lack of a pricing test, Scarf introduces as an 

alternative a quantity test for optimality.  

 

Over time several suggestions have been made to address the problem of finding prices for 

problems with non-convexities, especially for the case where the non-convexities are modeled 

using discrete variables. The objective has been to find dual prices and interpretation of dual 

prices for integer programming problems and mixed integer programming problems. The 

decisive work of Gomory and Baumol (1963) is addressing this issue, the ideas presented here 

has later been used to create a duality theory for integer programming problems. Wolsey 

(1981) gives a good description of this theory, and shows that in the integer programming 
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case we need to expand our view of prices to price-functions in order to achieve interpretable 

and computable duals (refer also for instance, Alcaly et al. (1966), Scarf (1990), Williams 

(1996), and Sturmfels (2003)). However, these dual price-functions are rather complex, and 

other researchers have suggested approximate alternatives, but none of these suggestions 

have, to our knowledge, been used successfully to analyze equilibrium prices in market with 

non-convexities. 

 

Recently, O’Neill et al. (2002) presented an innovative method for calculating discriminatory 

prices, referred to as IP-prices, based on a reformulation of the non-convex optimization 

problem. The method assumes that the optimal production plan is known and aims at 

generating market clearing prices, using a non-linear pricing scheme, pricing commodities, 

start-ups and capacity. Due to the fact that the commodity prices generated by O’Neill et al.’s 

procedure may possess some unwanted properties, Hogan and Ring (2003) developed a very 

interesting minimum uplift payment scheme for markets with non-convexities. Their method 

is similar in spirit to the pricing rules used in the New York and PJM electricity markets. 

However, the minimum uplift pricing rule is just a simple adjustment of linear pricing to a 

market in which non-convexities are present, and hence, not in line with integer programming 

duality theory. 

 

In this paper then, we suggest the use of modified IP-prices as equilibrium prices in markets 

with non-convexities. The prices are derived using a minor modification of the idea of O’Neill 

et al. and are based on the generation of a valid inequality that supports the optimal solution 

and can be viewed as an integer programming version of the separating hyperplane that 

supports the linear price system in the convex case. The modified IP-prices generated, are 

based on integer programming duality theory, and it can be shown that there exists a non-

linear non-discriminatory price-function, that supports the modified IP-prices. 

 

All three pricing approaches assume that the bidding format is modified in order for the 

generators to be able to use a multi-part bidding scheme. This is not customary in most of 

today’s existing electricity markets, and the incentive problems that might appear as a result 

of multi-part bidding protocols, have to be further analyzed. 

 

The paper is organized as follows. In section 2, the non-convex problem at hand is introduced, 

and the reformulation rendering the IP-prices derived by O’Neill et al. (2002) is presented. 
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We continue with the partial equilibrium formulation of the problem due to Hogan and Ring 

(2003), and present their minimum uplift pricing scheme. In section 3, we present the basis 

for the modified IP-prices and how they can be calculated. In section 4, we compare the three 

pricing methods on the modified Scarf example used by Hogan and Ring, and also illustrate 

the corresponding non-linear price functions for a few levels of demand. Finally, some 

concluding remarks and issues for future research are presented in section 5. 

 

2. An Optimization Model for the Unit Commitment and Dispatch Problem 

Hogan and Ring (2003) present an inter-temporal optimization model for economic unit 

commitment and dispatch. The model allows consideration of both dynamics, i.e. multiple 

period issues, and transmission constraints. The model is as follows: 

 

Max j
j

j

T

t i j
jtjtitit zSgCdB ∑∑ ∑ ∑ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=1
)()(  

subject to 0)( =+ t
t

tt yyL ι  

   tgdy ttt ∀−=  

   tjmzg jjjt ,∀≥  

   tjMzg jjjt ,∀≤  

   tjggR jtjtjt ,0),( 1 ∀≤−  

   tyK tt ∀≤ 0)(  

   jj uz ≤≤0  and integer for all j 

  

where )( itit dB  denotes a bid-based, well-behaved concave benefit function of demand for 

customer i in time period t, )( jtjt gC  denotes the bid-based, well-behaved convex cost 

function for output of generator type j in time period t, and jS  is the bid-based start-up cost 

for generator type j. Note the start-up costs could be time-dependent in a more general version 

of the model. Also, it is possible to include a constraint that guarantees that the start-up cost is 

only effective in the period that the generator is started up and hence, the generator can be run 

without incurring additional start-up cost as long as the generator is active. Shut down cost is 

also easy to include in the model. Furthermore, jm  and jM  are bid-based minimum and 

maximum outputs for each generator of type j that is committed, jz  is an integer variable 
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showing the number of generators of type j committed, ju  is an upper bound on the number 

of generators of type j, and ty  is the vector of net load at each location. For location ϕ , 

∑∑ ∈∈
−=

ϕϕϕ j jti itt gdy . )( tt yL  are the losses in period t with net demand t
t yι  where 

tι =(1,1,….,1). )( tt yK  represents the transmission constraints for net load ty  in period t, and 

finally, ),( 1−jtjtjt ggR  are ramping limits or other dynamic limits for generator j. 

 

The model presented is non-convex due to the integer variables used for modeling the fixed 

start-up costs and the attached minimum and maximum output constraints. Apart from this, 

the model is a convex mathematical programming problem, in which we have externalities 

arising from the transmission constraints. 

 

In this paper we will focus on the non-convexities that are present due to the integer variables. 

Hence, we will use a single period model without transmission constraints and without losses. 

Also the model that we use in this paper, has all demand located at a single location. The 

effects of multiple periods, transmission constraints and losses on the pricing scheme we 

suggest, will be the focus of future research. 

 

2.1 The Simplified Single-Period Model 

In a given period, with demand fixed at d, and no losses, ramping or transmission constraints, 

the problem studied is: 

 

Min jj jjj j gSgC ∑∑ +)(  

subject to dg
j j =∑  

   jmzg jjj ∀≥  

   jMzg jjj ∀≤  

   jj uz ≤≤0  and integer for all j 

   jg j ∀≥ 0  

 

The simplified model is a least-cost unit commitment and dispatch problem. Our main 

purpose of studying this simplified model is to present various alternatives for finding 

equilibrium prices in a market with non-convexities, such as the day-ahead electricity market, 



 6

in which several different production technologies are present and are competing. The 

simplified model is of the same type as the allocation model used by Scarf (1994) in his 

seminal paper on resource allocation and pricing in the presence of non-convexities. Scarf 

presented, in the absence of usable prices, a quantity test that can be used to verify optimality 

or as a means to making exchanges that lead to optimality. 

 

Recently, O’Neill et al. (2001) presented an interesting reformulation that generates IP-prices 

that are interpretable as market clearing prices, and can be viewed as a Walrasian 

decentralized price-directed equilibrium in the presence of indivisibilities. The reformulation 

used by O’Neill et al. is accomplished by using knowledge of the optimal solution values for 

the integer variables, and adding constraints to the model that guarantee that these optimal 

values are attained. Hence, the procedure and reformulation is not intended to be used in order 

to calculate the optimal solution, but rather to use the knowledge to obtain interpretable prices 

that can be used in order to create viable contracts in the market. 

 

2.2 O’Neill et al.’s Reformulation 

The single-period problem with the integer commitment variables, jz , fixed at their known 

optimal values, *
jz , is the following: 

 

Min jj jjj j zSgC ∑∑ +)(  

subject to dg
j j =∑  

   jmzg jjj ∀≥  

   jMzg jjj ∀≤  

   jj uz ≤≤0  

   jg j ∀≥ 0  

   jzz jj ∀= *  

 

The reformulated problem is a convex programming problem and has an associated dual 

problem, with dual variables p, jjj γβα ,,  and jπ . O’Neill et al. interpret these dual variables 

as equilibrium prices, where p is the commodity price, jγ  are the capacity prices, and 
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jj βα , , jπ  are discriminatory uplift prices. Based on this, O’Neill et al. determine a set of 

market clearing contracts, T, that can be offered from the auctioneer to the market 

participants, and that are such that they clear the market. They also show that the IP-prices are 

optimal solutions to the decentralized optimization problems faced by each generator type, 

and that in the case where the cost functions take the form jjjj gCgC =)( , i.e. linear cost 

functions, each generator’s optimal profit is exactly equal to zero.  

 

However, as Hogan and Ring (2003) point out, the market clearing prices, or IP-prices, have 

some properties that are questionable. First, the commodity IP-prices, p, can be volatile, i.e. a 

small change in demand can lead to a large change in the IP-commodity price. Secondly, the 

IP-uplift charges can be positive or negative and also show a volatile behavior. This will be 

illustrated in the example in section 4. Hogan and Ring then make use of the reformulation of 

O’Neill et al. and interpret the IP-equilibrium prices as prices generated from a partial 

equilibrium model. This is done in order to highlight the importance of the IP-uplift payments 

that is part of the market settlement system. 

 

2.3 Hogan and Ring’s Partial Equilibrium Formulation 

Hogan and Ring’s partial equilibrium formulation includes the following problems: 

 

A) The problem faced by the system operator, i.e. the market coordinator: 

 

Max ( ) jj ji j ji zgdp ∑∑ ∑ −− π  

subject to ∑∑ =
i ij j dg  

jj uz ≤≤0  and integer for all j 

 

where p, jg  and jz  are variables. It should be pointed out that the system operator only acts 

as an intermediary market maker that trades electricity with generators and loads and 

purchases / sells commitment tickets. The assumption is that the system operator is a fully 

regulated monopolist that through the regulation acts as if it was a price taking profit 

maximizer. 
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B) The problem faced by each type of generator: 

 

Max jjjjjjj zSgCzpg −−+ )(π  

subject to jjj mzg ≥  

   jjj Mzg ≤  

   jj uz ≤≤0  and integer 

 

C) The problem for each consumer: 

 

Max iii cdB +)(  

subject to jj ijiii scpd Π+≤+ ∑ >0
ω  

 

with variables p, id , and ic . Here, 1,0 =≥ ∑i ijij ss  are the share holdings of profits for each 

consumer and iω  is the initial wealth endowment for the numeraire good for consumer i with 

consumption level ic . 

 

Hogan and Ring show that these three problems form a partial equilibrium model, in which 

the set of prices and quantities ),,,,( ***
jjjj zgdp π , constitutes a competitive partial 

equilibrium. However, the problem faced by the system operator must be reformulated in the 

same way as is done by O’Neill et al., in order for the set of problems to be well-behaved. I.e. 

the system operator’s problem is: 

 

Max ( ) jj ji j ji zgdp ∑∑ ∑ −− π  

subject to ∑∑ =
i ij j dg  

juz jj ∀≤≤0   

   jzz jj ∀= *  

 

The IP-prices and quantities support the competitive partial equilibrium. With the equilibrium 

profit for the system operator =Π 0 ( ) ***
jj ji j jj zgdp ∑∑ ∑ −− π , which in the simplified 
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model, with no transmission effects, reduces to the last term. This last term is equal to the net 

payment to the generators for commitment tickets. From the construct of the revised 

formulation, including the equality constraints for the integer variables, it is clear that the dual 

prices jπ  can be both positive and negative. This also means that the total profit for the 

system operator can either be positive or negative. Since the prices are equivalent with the IP-

prices in O’Neill et al.’s model, the partial equilibrium interpretation only serves as a guide to 

how these equilibrium quantities and prices can be interpreted. 

 

As Hogan and Ring make clear, the net payments for the commitment tickets must be 

collected in form of fixed charges from consumers and/or producers. They are independent of 

the level of consumption and found in the partial equilibrium model based on the consumers’ 

ownership shares of the system operator’s loss or profit. In the day-ahead electricity market, 

such fixed transfers are not available within the market designs used. However, there are 

markets in which net payments are collected in the form of an uplift charge, allocated between 

consumers according to some a priori allocation rule. Because of the volatility of the IP-prices 

and the fact that the uplift charge can be both positive and negative, Hogan and Ring suggest 

the use of minimum uplift payments and resulting equilibrium prices. The basis for this is that 

they would like the uplift payments to be nonnegative and the commodity prices less volatile. 

 

2.4 Hogan and Ring’s Minimum Uplift Equilibrium Model 

Ring (1995) studied approaches for analyzing deviations from the simple perfectly convex 

equilibrium model. One such deviation of interest is the non-convexities generated from the 

need to include integer variables in the model formulation. As an approximation, which is 

close to the ideal situation in the linear case in which a linear price system suffices, Ring 

suggests an approach in which the necessary total uplift payment is kept as low as possible. 

 

The minimum uplift equilibrium model is based on the idea that given the optimal solution 

),( ** zg , define the nonnegative commitment payments in terms of the uplift requirements 

needed to make committed and uncommitted generators at least indifferent. This means that 

for a market clearing price, p, the commitment payment to each generator is  

),0()( *
jjj Maxp Π−Π= +π  
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where **** )( jjjjjj zSgCpg −−=Π  and +Π j  is the optimal value of the problem 

 

 Max jjjjj zSgCpg −− )(  

 subject to jjj mzg ≥  

   jjj Mzg ≤  

   jj uz ≤≤0  and integer 

   0≥jg  

 

The minimum uplift paying rule resulting from this is to pay each generator an amount )( pjπ  

in addition to the payment received for the commodities. The payment )( pjπ  is conditional 

on accepting the commitment and dispatch solution. 

 

By construction, the uplift payment is non-negative and the total charge that has to be 

collected from the customers/consumers is ∑ j jπ . For each commodity price, there exists a 

corresponding uplift payment. All these support the competitive market solution. Among all 

the possible pricing schemes (p, )( pjπ ), the minimum uplift equilibrium pricing scheme is 

the commodity price for which the total uplift payment is minimal. As is illustrated in the 

example in section 4, the minimum uplift pricing scheme yields relatively stable commodity 

prices as a function of demand however, the uplift payments are rather volatile. 

 

3. Modified IP-prices 

Along with the minimum uplift pricing of Hogan and Ring and the IP-prices suggested by 

O’Neill et al., we suggest a third alternative. This alternative is more related to the original 

uplift prices, but yields more stable commodity prices and uplift charges. The modified IP 

prices are based on the connection between the IP-prices and the dual information generated 

when Benders decomposition (Benders (1962)) is used to solve the resource allocation 

problem. 

 

Benders decomposition is a computational method which is often used to solve models in 

which a certain set of variables, the complicating variables, are fixed at certain values and the 

remaining problem and its dual is solved in order to get bounds for the optimal value of the 
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problem and also generate information on how to fix the complicating variables in order to 

obtain a new solution with a potentially better objective function value. When Benders 

decomposition is used to solve a nonlinear integer programming problem, as the problem 

studied in this paper, the problem is partitioned into solving a sequence of “easy” convex 

optimization problems and their duals, where the complicating integer variables are held 

fixed. These problems, often called the Benders sub-problems, are generating lower bounds 

on the optimal objective function value, and yield information that is added to the Benders 

master problem, a problem involving only the complicating variables. The information 

generated takes the form of cutting planes. 

 

Here, we are not interested in using Benders decomposition to solve the optimization problem 

since we assume that we already know the optimal solution. However, viewing the 

reformulation used by O’Neill et al. as solving a Benders sub-problem in which the 

complicating integer variables are held fixed to their optimal values reveals useful 

information concerning the IP-prices generated in the reformulation. The reformulation 

viewed as a Benders sub-problem is the following: 

 

Min *
jj jjj j zSgC ∑∑ +  

subject to dg
j j =∑  

   jmzg jjj ∀≥ *  

   jMzg jjj ∀≤ *  

    jg j ∀≥ 0  

  

where *
jz  are the known optimal values for the integer variables. Here we are using the linear 

version of the problem in order to simplify. However, the results derived are true also for the 

case when the production function is a general convex function, although in this case 

nonlinear programming duality has to be used. 

 

The dual to the Benders sub-problem with the integer variables fixed at their optimal values is 
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Max ***
jj jjjj jjjj j zSMzmzpd ∑∑∑ +−+ βα  

subject to jjj Cp ≤−+ βα  

   0, ≥jj βα  

 

The dual of the reformulation used by O’Neill et al. is 

 

Max jj jzpd π∑+ *  

subject to jjj Cp ≤−+ βα  

   jjjjjj SMm ≤++− πβα  

   0, ≥jj βα  

 

It is obvious that the optimal dual solution ( )*** ,, jjp βα  yields a feasible solution to the dual 

of the reformulation and that jjjjjj MmS *** βαπ −+= . This means that the optimal dual 

variable values of the equality constraints, jzz jj ∀= * , are in fact the coefficients in the 

Benders cut that is generated when solving the Benders sub-problem with the integer 

variables held fixed at their optimal values. 

 

The Benders cut might incorporate coefficients in a valid inequality. The Benders objective 

function cut has the form 

 

( ) jj jjjjj zSMmdp ∑ +−+ *** βα  

 

From this we can generate an inequality of the form 

 

( ) ( ) *****
jj jjjjjjj jjjjj zSMmzSMm ∑∑ +−≥+− βαβα   

 

This inequality is a valid inequality for some problems, whereas for other problems a different 

set of variables, including both integer-constrained variables and continuous variables, needs 

to be held fixed in order to generate a supporting valid inequality. From this, it is obvious that 
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the dual information generated in O’Neill et al.’s reformulation and the dual information 

generated from the Benders sub-problem stated above, is the same. 

 

In linear and convex programming the existence of a linear price vector is based on the use of 

the Separating Hyperplane Theorem. Based on the convexity assumption, the equilibrium 

prices are the dual variables or Lagrange multipliers for the market clearing constraints. In the 

non-convex case it is well known that not every efficient output can be achieved by simple 

centralized pricing decisions or by linear competitive market prices. If we could find a 

supporting separating valid inequality that could serve the same purpose as the separating 

hyperplane in the convex case, we would have a way to construct equilibrium market clearing 

prices in the non-convex case. However, in order to do so, we need to use a reformulation of 

the original problem in which the coefficients derived from the Benders sub-problem are 

coefficients in valid inequality. The problem is that this is not always the case when we fix the 

integer variables to their optimal values. 

 

Based on this observation, it is easy to see why the IP commodity and uplift prices are 

volatile. The reason for the volatility comes from the fact that for some problems the 

coefficients in the Benders cut, derived when the integer variables are held fixed to their 

optimal values, are in fact coefficients from a separating valid inequality for the mixed integer 

programming problem studied. Hence, the separating supporting valid inequality is the 

replacement of the supporting hyperplane that is the basis for linear pricing in the convex 

case.  However, for other problems this is not the case. This means that if we are looking at a 

class of problems for which a supporting valid inequality only includes integer variables, the 

IP-prices generated will yield a supporting valid inequality in the sense that the inequality 

supports the optimal solution and is a separating hyperplane. That is, appending this valid 

inequality to the original problem does not cut off any other feasible solution. 

 

The original Scarf example, with two production technologies, Smokestack and High-Tech, 

falls into this class of problems. However, Hogan and Ring’s modified Scarf problem does 

not. Even if the problem under study is not within the class of problems in which a supporting 

valid inequality only includes integer variables, it might be the case that for certain demand 

values the coefficients for the integer variables generated from the optimal dual variable 

values are coefficients for these variables in a supporting valid cutting plane, whereas for 



 14

other demand values they are not. For problems in this class, the IP-commodity price and IP-

uplift prices will be volatile. 

 

Hence, in order to derive IP-prices that are supported by a separating valid inequality, it is 

necessary to regard also some of the continuous variables as complicating variables that are to 

be held fixed in the reformulated problem. This means that when using the partitioning idea in 

Benders decomposition in order to calculate the optimal solution, it is clear that only the 

integer variables are complicating, when “complicating” is interpreted as complicating from a 

computational point of view. However, when our aim is to generate interpretable prices, 

another set of variables should be regarded as complicating. We need to find out which 

variables should be held fixed at their optimal values in order for the Benders cutting plane, 

derived by solving the Benders sub-problem and it’s dual, to be a valid inequality that 

supports the optimal solution. When these variables are held fixed at their optimal values, this 

cutting plane will, when added to the problem, generate commodity prices and uplift charges 

that have the properties we are looking for, i.e. market clearing and non-volatile. We call the 

prices derived this way the modified IP-prices. In the example presented below, we will show 

how these prices can be calculated. 

 

If the problem studied is such that the sub-problem generated when the integer variables are 

held fixed to their optimal values has the integrality property, it is also possible to derive the 

corresponding nonlinear price function. The existence of such non-linear price functions and 

how they can be generated can be found in Wolsey (1981). It should be noted that since we 

know what we are looking for, i.e. a valid inequality having certain specific coefficients, the 

generation of the non-linear price function might be easier. Also, we are not searching for a 

supporting separating inequality that when appended to the original problem yields an integer 

feasible solution since this is not necessary for our purposes when only interpretable dual 

information is searched for. 

 

In the general mixed integer case, the approach presented by Wolsey to generate the non-

linear price-function compatible with sub-additive integer programming duality, cannot be 

used. However, if we can generate a valid inequality that supports the mixed integer optimal 

solution, the prices derived from the original problem with this valid inequality appended, can 

be interpreted as equilibrium market clearing prices. It is an interesting research question to 

find out if it is possible to generate a non-linear price function also for this general case. 
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It should be clear that both the Walrasian interpretation that supports O’Neill et al.’s market 

clearing contracts and the partial equilibrium model that is used by Hogan and Ring can be 

reformulated for our modified IP-prices. 

 

4. Hogan and Ring’s Adapted Scarf’s Example 

We use Hogan and Ring’s example to illustrate the generation of the modified IP prices that 

are supported by a nonlinear price function. The example consists of three technologies, 

Smokestack, High Tech and Med Tech, with the following production costs: 

 

    Smokestack  High Tech  Med Tech 

Capacity    16   7   6 

Minimum Output    0   0   2 

Construction Cost   53   30   0 

Marginal Cost    3   2   7 

Average Cost    6.3125   6.2857   7 

Maximum number    6   5   5 

 

We can formulate Hogan and Ring’s allocation problem as a mixed integer programming 

problem as follows, denoted problem P. 

 

(P) Min 321321 72303053 qqqzzz +++++  

subject to Dqqq =++ 321  

   016 11 ≥− qz  

   07 22 ≥− qz  

06 33 ≥− qz  

02 33 ≥+− qz  

5
5
6

3

2

1

−≥−
−≥−
−≥−

z
z
z

 

   0,, 321 ≥qqq  

   0,, 321 ≥zzz  and integer 
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Here, D denotes the demand and the construction variables for Smokestack, High Tech and 

Med Tech are 1z , 2z  and 3z , respectively, whereas 1q , 2q  and 3q  denote the level of 

production using the corresponding Smokestack, High Tech and Med Tech technologies. Note 

that for fixed integer values of 1z , 2z , and 3z , the remaining problem in the continuous 

variables have the integrality property. Hence, the allocation problem is in fact a pure integer 

programming problem. The reason for this is the special form of the constraint matrix for this 

example. The optimal solutions for demand levels ranging from 1 to 161 is given in table 1 in 

the appendix. 
 

The difficulty of finding a linear price structure for this problem is obvious from the graph of 

the total cost as a function of demand, illustrated in figure 1. The figure only shows the total 

cost function for demand ranging from 1 to 25. Obviously, as demand grows, the total cost 

function becomes more linear, and from demand equal to 133, the increase is linear in 

demand. 
 

Figure 1: Total Cost for Demands Ranging from 1 to 25 
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In table 2 in the appendix the commodity and uplift prices generated from the three 

approaches discussed in sections 2 and 3 in this paper, are displayed (IP corresponding to 

O’Neill et al.,  Minup to the Hogan and Ring approach, and ModIP is the modified IP prices 

we suggest in section 3). The three methods presented use three different reformulations to 

calculate the prices. 
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 O’Neill et al.’s reformulation of problem P is: 

 

Min 321321 72303053 qqqzzz +++++  

subject to Dqqq =++ 321  

   016 11 ≥− qz  

   07 22 ≥− qz  

06 33 ≥− qz  

02 33 ≥+− qz  

5
5
6

3

2

1

−≥−
−≥−
−≥−

z
z
z

 

   *
11 zz =  

   *
22 zz =  

   *
33 zz =  

   0,, 321 ≥qqq  

   0,, 321 ≥zzz  and integer 

 

where *
1z , *

2z  and *
3z  represent the optimal integer solution for the specified demand in the 

range 1 to 161. For some of the demands, this reformulation generates negative uplift prices, 

which causes the commodity prices and uplift prices to be very volatile as a function of 

demand. This volatility is illustrated in the two graphs of figures 2 and 3. 
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Figure 2: Commodity Price, IP 

IP Commodity Price

0
1
2
3
4
5
6
7
8

1 14 27 40 53 66 79 92 105 118 131 144 157

Demand

Co
m

m
od

ity
 P

ric
e

Series1

 
 

Figure 3: Uplift Price, IP 
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Hogan and Ring solve the following problem to calculate minimum-uplift commodity and 

uplift prices: find commodity price, p, for which the total uplift payment ( )p
j j∑ π  is 

minimal, where the uplift payment to each generator-class is ( ) ( )*,0 jjj Maxp Π−Π= +π , and 

where ****
jjjjjj zSqCpq −−=Π , the unit cost vector C = (3,2,7), and the start up cost vector S 

= (53,30,0). The +Π j s are the optimal objective function values of the problems: 
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jjjjjj zSqCpq −−=Π+ Max  

subject to jjjjj zMqzm ≤≤  

   jj uz ≤  and integer 

 

From the construction, it is clear that the min uplift commodity prices are less volatile as 

compared with the IP prices. This is seen in figure 4 for the example. However, the min uplift 

payments are volatile at a low level, which can be seen from figure 5. 

 

Figure 4: Commodity Price, Minup 
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Figure 5: Uplift Price, Minup 
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For the modified IP prices, the reformulated problem to be solved is: 

 

Min 321321 72303053 qqqzzz +++++  

subject to Dqqq =++ 321  

   016 11 ≥− qz  

   07 22 ≥− qz  

06 33 ≥− qz  

02 33 ≥+− qz  

5
5
6

3

2

1

−≥−
−≥−
−≥−

z
z
z

 

   *
11 zz =  

   *
22 zz =  

   *
33 qq =  

   0,, 321 ≥qqq  

   0,, 321 ≥zzz  and integer 

 

The reason for requiring production of units of the third type to be held fixed ( *
33 qq = ) is that 

by doing so, the coefficients in the corresponding Benders cut will be coefficients in a valid 

inequality, a separating hyperplane, that supports the optimal solution for all levels of 

demand. Hence, by construct the modified IP prices are theoretically consistent with mixed 

integer programming duality theory. 

 

As seen in the graphs of figures 6 and 7, the modified IP-prices are not volatile, and the 

modified IP uplift prices form, as expected, an increasing stepwise function of demand up to 

the point where the problem’s continuous relaxation has an integer solution. From that level 

of demand on, in this example D = 133, linear pricing is sufficient. 
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Figure 6: Commodity Price, ModIP 
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Figure 7: Uplift Price, ModIP 
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When the modified IP-prices are derived, the following valid inequalities are used: For 

demand ranging from 1-13, the inequality iMIPqzz ≥++ 321 53053  is a price supporting 

valid inequality. Here, iMIP  is the modified IP-uplift seen in the table above. For demand 

ranging from 14-132, the valid inequality that supports the modified IP-prices, is 

iMIPqzz ≥++ 321 42353 , whereas for demands 133-161, the linear programming relaxation 

of the problem has integer solution, and hence, a linear price is feasible. 
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In fact, the inequality iMIPqzz ≥++ 321 42353  is modified IP-price supporting for all values 

of demand in the range 1-132, except for demands equal to 1, 8 and 13, given that the right 

hand sides for the demand values 2, 3, 4, 5, 6, 7, 9, 10, 11, and 12 are changed to 8, 12, 16, 

20, 24, 23, 31, 35, 39, and 43, respectively. However, using this alternative supporting valid 

inequality to generate the prices, leads to an increased volatility in commodity and uplift 

prices as can be seen in figures 8 and 9 below, for the demand values between 1 and 20. 

 

Figure 8: Uplift Price, ModIP 
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Figure 9: Alternative Uplift Price, ModIP 
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The modified IP commodity price is stable at the value 2 for demand ranging from 1-13, and 

then jumps to the value 3 (figure 6). This is when the supporting valid inequality 

iMIPqzz ≥++ 321 53053  is used for demands 1-13. However, if the alternative is used, the 

commodity price will be 3 for all demand values ranging from 1-132 except the demands 1, 8 

and 13, for which the commodity price is 2. 

 

The modified IP-prices are supported by a non-linear price function and hence, are non-

discriminatory. Here, we present the shape of the nonlinear price function for a few demand-

values. The non-linear price function for demand equal to 55 can be derived as follows. 

Adding 

  

  Dqqq =++ 321  

  016 11 ≥− qz  

  07 22 ≥− qz  

 

yields the constraint 55716 321 ≥++ qzz . Adding 7 times the constraint 52 −≥− z , dividing 

by 16, and rounding up to the nearest integer value, gives us the constraint 231 ≥+ qz .  

Taking 3 times the inequality 55716 321 ≥++ qzz  and adding the inequality 231 ≥+ qz  to 

this result, we get the next inequality by dividing the result by 7, and rounding up. The 

resulting inequality is 2437 321 ≥++ qzz . Finally, the valid inequality 

18242353 321 ≥++ qzz  is generated by multiplying the inequality 55716 321 ≥++ qzz  by 9, 

adding the inequality 231 ≥+ qz  to this intermediate result, and finally, adding 2 times the 

inequality 2437 321 ≥++ qzz  to this. The price supporting valid inequality is then derived by 

dividing by 3 and rounding up to the nearest integer. The nonlinear price function that 

supports the modified IP prices for the demand level 55 is then given by the following 

expression: 
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Here (*) denotes the coefficient or right hand side of the constraint with the respective number 

in the formulation of the original mixed integer program. 

 

For demand equal to 56 the nonlinear price function becomes a little bit more complicated. 

The reason for this is that for this demand level we need to use the technology with the high 

marginal cost. The optimal uplift for the demand equal to 56 is 187, but the procedure used to 

construct the price function for demand equal to 55 only generate an uplift of 186 for demand 

equal to 56. Hence, we have still not generated the price supporting valid inequality. In order 

to generate the price supporting inequality 18742353 321 ≥++ qzz  we need to derive a 

number of additional valid inequalities. First we generate the two inequalities 

10631330 3321 ≥−++ zqzz  and 106321330 3321 ≥+++ zqzz . These are generated by 

adding the inequalities 18642353 321 ≥++ qzz  and 2537 321 ≥++ qzz , and to the result add 

one of the inequalities 02 33 ≥+− qz , 06 33 ≥− qz , dividing by two and rounding up. Also 

the inequality 49614 321 ≥++ qzz  is easily generated by adding the inequalities 

18642353 321 ≥++ qzz  and 56716 321 ≥++ qzz , dividing the result by five and rounding 

up. 

 

Another inequality needed to generate the price supporting valid inequality is the inequality 

13231637 3321 ≥+++ zqzz . This inequality comes from adding three of the previously 

generated inequalities namely, 10631330 3321 ≥−++ zqzz , 106321330 3321 ≥+++ zqzz  

and 49614 321 ≥++ qzz , dividing the result by two and rounding up. The next inequality that 

needs to be generated, is the inequality which stems from 2 times the inequality 

13231637 3321 ≥+++ zqzz  and 3 times the inequality 49614 321 ≥++ qzz , added together 
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with the inequality 02 33 ≥+− qz . Using division by two and rounding up, this yields the 

inequality 20652558 321 ≥++ qzz . Finally, the price supporting inequality is generated by 

taking three times the inequality 56716 321 ≥++ qzz , adding to the previously generated 

inequality 20652558 321 ≥++ qzz , and dividing by two. 

 

In order to illustrate the non-linear price function supporting the demand levels 1-13, we 

choose to generate the non-linear function supporting the equilibrium for demand equal to 1. 

The following three inequalities are easily derived, 1321 ≥++ zzz , 1321 ≥++ qzz , and 

1321 ≥++ zqq , using the fact that 1321 =++ qqq , 016 11 ≥− qz , 07 22 ≥− qz , and 

06 33 ≥− qz , adding, dividing, and rounding up. With these three inequalities added, the 

optimization problem has the objective function value 32 and the solution is integral. The dual 

variables can be used to generate the inequality 502520203030 32121 ≥++++ qqqzz , 

subtracting 20 times the equality constraint yields 3053030 321 ≥++ qzz , which by adding 

23 times the inequality 01 ≥z , generates the desired valid inequality. 

 

It should be noted that we do not suggest that the non-linear price function supporting the 

optimal solution and the modified IP prices should be generated in practical applications. 

However, the prices generated using this idea, are due to the existence of a non-linear non-

discriminatory price function, and theoretically sound. 

 

5. Conclusions and Issues for Future Research 

In this paper we have shown that the modified IP-prices yield commodity and uplift charges 

that have some nice properties. The use of the optimal solution to generate a reformulation 

that generates a supporting valid inequality to the resource allocation optimization problem is 

also presented. This means that the modified IP-prices, for problems which can be regarded as 

pure integer programming problems, are consistent with the basis in integer programming 

duality. Knowing the coefficients of a supporting valid inequality means that we know that, in 

this case, there exists a non-discriminatory non-linear price-function that together with the 

affine capacity and product prices yield equilibrium prices in markets with non-convexities. 

Also, knowing the coefficients of the supporting valid inequality makes it easier to construct 

the non-linear price-function as compared with the case where these coefficients are 

unknown. Hence, the modified IP-prices have a non-linear non-discriminatory price-function 
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supporting them, and although they seem to be discriminatory, they can also be viewed as a 

compact representation of the supporting non-linear price-function, and hence, are in fact non-

discriminatory. For the more general mixed integer programming case, the modified IP-prices 

are supported by a separating valid inequality. However, the existence of a non-linear price 

function and how it can be generated is in this case more complicated and would be an 

interesting question for further research. 

 

How the knowledge of the existence of a separating supporting valid inequality that can be 

used to derive equilibrium prices in markets with non-convexities should be used to support a 

bidding format and a contract mechanism that are incentive compatible, remains another 

interesting question for future research. Other research questions that should be addressed, are 

how elastic demand will effect and can be dealt with in markets with non-convexities, if and 

how the uplift charges should be collected among the customers, and how this cost allocation 

should influence the design of market clearing contracts. If it is satisfactory just to have a 

theoretical foundation for the use of modified IP-prices, or if procedures that actually 

generates a corresponding non-discriminatory price-function needs to be further investigated 
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Appendix 

 

Table 1: Optimal Solutions 
Demand  Smoke Smoke High High Med Med Total 

    Stack Stack Tech Tech Tech Tech Cost 
    Number Output Number Output Number Output 

1  0 0 1 1 0 0 32 
2  0 0 0 0 1 2 14 
3  0 0 0 0 1 3 21 
4  0 0 0 0 1 4 28 
5  0 0 0 0 1 5 35 
6  0 0 0 0 1 6 42 
7  0 0 1 7 0 0 44 
8  0 0 1 6 1 2 56 
9  0 0 1 7 1 2 58 
10  0 0 1 7 1 3 65 
11  0 0 1 7 1 4 72 
12  0 0 1 7 1 5 79 
13  0 0 2 13 0 0 86 
14  0 0 2 14 0 0 88 
15  1 15 0 0 0 0 98 
16  1 16 0 0 0 0 101 
17  0 0 2 14 1 3 109 
18  1 16 0 0 1 2 115 
19  1 16 0 0 1 3 122 
20  1 16 0 0 1 4 129 
21  0 0 3 21 0 0 132 
22  1 15 1 7 0 0 142 
23  1 16 1 7 0 0 145 
24  0 0 3 21 1 3 153 
25  1 16 1 7 1 2 159 
26  1 16 1 7 1 3 166 
27  1 16 1 7 1 4 173 
28  0 0 4 28 0 0 176 
29  1 15 2 14 0 0 186 
30  1 16 2 14 0 0 189 
31  0 0 4 28 1 3 197 
32  2 32 0 0 0 0 202 
33  1 16 2 14 1 3 210 
34  2 32 0 0 1 2 216 
35  0 0 5 35 0 0 220 
36  2 32 0 0 1 4 230 
37  1 16 3 21 0 0 233 
38  0 0 5 35 1 3 241 
39  2 32 1 7 0 0 246 
40  1 16 3 21 1 3 254 
41  2 32 1 7 1 2 260 
42  2 32 1 7 1 3 267 
43  2 32 1 7 1 4 274 
44  1 16 4 28 0 0 277 
45  2 31 2 14 0 0 287 
46  2 32 2 14 0 0 290 
47  1 16 4 28 1 3 298 
48  3 48 0 0 0 0 303 
49  2 32 2 14 1 3 311 
50  3 48 0 0 1 2 317 
51  1 16 5 35 0 0 321 
52  3 48 0 0 1 4 331 
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53  2 32 3 21 0 0 334 
54  1 16 5 35 1 3 342 
55  3 48 1 7 0 0 347 
56  2 32 3 21 1 3 355 
57  3 48 1 7 1 2 361 
58  3 48 1 7 1 3 368 
59  3 48 1 7 1 4 375 
60  2 32 4 28 0 0 378 
61  3 47 2 14 0 0 388 
62  3 48 2 14 0 0 391 
63  2 32 4 28 1 3 399 
64  4 64 0 0 0 0 404 
65  3 38 2 14 1 3 412 
66  4 64 0 0 1 2 418 
67  2 32 5 35 0 0 422 
68  4 64 0 0 1 4 432 
69  3 48 3 21 0 0 435 
70  2 32 5 35 1 3 443 
71  4 64 1 7 0 0 448 
72  3 48 3 21 1 3 456 
73  4 64 1 7 1 2 462 
74  4 64 1 7 1 3 469 
75  4 64 1 7 1 4 476 
76  3 48 4 28 0 0 479 
77  4 63 2 14 0 0 489 
78  4 64 2 14 0 0 492 
79  3 48 4 28 1 3 500 
80  5 80 0 0 0 0 505 
81  4 64 2 14 1 3 513 
82  5 80 0 0 1 2 519 
83  3 48 5 35 0 0 523 
84  4 63 3 21 0 0 533 
85  4 64 3 21 0 0 536 
86  3 48 5 35 1 3 544 
87  5 80 1 7 0 0 549 
88  4 64 3 21 1 3 557 
89  5 80 1 7 1 2 563 
90  5 80 1 7 1 3 570 
91  4 63 4 28 0 0 577 
92  4 64 4 28 0 0 580 
93  5 79 2 14 0 0 590 
94  5 80 2 14 0 0 593 
95  4 64 4 28 1 3 601 
96  6 96 0 0 0 0 606 
97  5 80 2 14 1 3 614 
98  6 96 0 0 1 2 620 
99  4 64 5 35 0 0 624 
100  6 96 0 0 1 4 634 
101  5 80 3 21 0 0 637 
102  4 64 5 35 1 3 645 
103  6 96 1 7 0 0 650 
104  5 80 3 21 1 3 658 
105  6 96 1 7 1 2 664 
106  6 96 1 7 1 3 671 
107  5 79 4 28 0 0 678 
108  5 80 4 28 0 0 681 
109  6 95 2 14 0 0 691 
110  6 96 2 14 0 0 694 
111  5 80 4 28 1 3 702 
112  6 96 2 14 1 2 708 
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113  6 96 2 14 1 3 715 
114  5 79 5 35 0 0 722 
115  5 80 5 35 0 0 725 
116  6 95 3 21 0 0 735 
117  6 96 3 21 0 0 738 
118  5 80 5 35 1 3 746 
119  6 96 3 21 1 2 752 
120  6 96 3 21 1 3 759 
121  6 96 3 21 1 4 766 
122  6 96 3 21 1 5 773 
123  6 95 4 28 0 0 779 
124  6 96 4 28 0 0 782 
125  6 95 4 28 1 2 793 
126  6 96 4 28 1 2 796 
127  6 96 4 28 1 3 803 
128  6 96 4 28 1 4 810 
129  6 96 4 28 1 5 817 
130  6 95 5 35 0 0 823 
131  6 96 5 35 0 0 826 
132  6 95 5 35 1 2 837 
133  6 96 5 35 1 2 840 
134  6 96 5 35 1 3 847 
135  6 96 5 35 1 4 854 
136  6 96 5 35 1 5 861 
137  6 96 5 35 1 6 868 
138  6 96 5 35 2 7 875 
139  6 96 5 35 2 8 882 
140  6 96 5 35 2 9 889 
141  6 96 5 35 2 10 896 
142  6 96 5 35 2 11 903 
143  6 96 5 35 2 12 910 
144  6 96 5 35 3 13 917 
145  6 96 5 35 3 14 924 
146  6 96 5 35 3 15 931 
147  6 96 5 35 3 16 938 
148  6 96 5 35 3 17 945 
149  6 96 5 35 3 18 952 
150  6 96 5 35 4 19 959 
151  6 96 5 35 4 20 966 
152  6 96 5 35 4 21 973 
153  6 96 5 35 4 22 980 
154  6 96 5 35 4 23 987 
155  6 96 5 35 4 24 994 
156  6 96 5 35 5 25 1001 
157  6 96 5 35 5 26 1008 
158  6 96 5 35 5 27 1015 
159  6 96 5 35 5 28 1022 
160  6 96 5 35 5 29 1029 
161  6 96 5 35 5 39 1036 
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Table 2: Commodity and Uplift Charges 
Demand   Commodity prices  Uplift charges 

    IP Minup ModIP  IP Minup ModIP 
1  2 6.286 2  30 25.714 30 
2  0 6.286 2  14 1.429 10 
3  7 6.286 2  0 2.143 15 
4  0 6.286 2  28 2.857 20 
5  7 6.286 2  0 3.571 25 
6  7 6.286 2  0 4.286 30 
7  3 6.286 2  23 0 30 
8  2 6.286 2  40 5.714 40 
9  2 6.286 2  40 1.429 40 
10  7 6.286 2  -5 2.143 45 
11  7 6.286 2  -5 2.857 50 
12  7 6.286 2  -5 3.571 55 
13  2 6.286 2  60 4.286 60 
14  3 6.286 2  46 0 60 
15  3 6.286 3  53 3.714 53 
16  3 6.286 3  53 0.429 53 
17  7 6.286 3  -10 2.143 58 
18  7 6.286 3  -11 1.857 61 
19  7 6.286 3  -11 2.571 65 
20  7 6.286 3  -11 3.286 69 
21  3 6.286 3  69 0 69 
22  3 6.286 3  76 3.714 76 
23  3 6.286 3  76 0.429 76 
24  7 6.286 3  -15 2.143 81 
25  3 6.286 3  84 1.857 84 
26  7 6.286 3  -16 2.571 88 
27  7 6.286 3  -16 3.286 92 
28  3 6.286 3  92 0 92 
29  3 6.286 3  99 3.714 99 
30  3 6.286 3  99 0.429 99 
31  7 6.286 3  -20 2.143 104 
32  3 6.286 3  106 0.857 106 
33  7 6.286 3  -21 2.571 111 
34  7 6.286 3  -22 2.286 114 
35  3 6.286 3  115 0 115 
36  7 6.312 3  -22 3.688 118 
37  3 6.312 3  122 0.375 122 
38  7 6.312 3  -25 2.063 127 
39  3 6.312 3  129 0.75 129 
40  7 6.312 3  -26 2.438 134 
41  7 6.312 3  -27 2.125 137 
42  7 6.312 3  -27 2.813 141 
43  7 6.312 3  -27 3.5 145 
44  3 6.312 3  145 0.188 145 
45  3 6.312 3  152 3.875 152 
46  3 6.312 3  152 0.563 152 
47  7 6.312 3  -31 2.25 157 
48  3 6.312 3  159 0.938 159 
49  7 6.312 3  -32 2.625 164 
50  3 6.312 3  167 2.313 167 
51  3 6.312 3  168 0 168 
52  7 6.312 3  -33 3.688 171 
53  3 6.312 3  175 0.375 175 
54  7 6.312 3  -36 2.063 180 
55  3 6.312 3  182 0.75 182 
56  7 6.312 3  -37 2.438 187 
57  3 6.312 3  190 2.125 190 
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58  7 6.312 3  -38 2.813 194 
59  7 6.312 3  -38 3.5 198 
60  3 6.312 3  198 0.188 198 
61  3 6.312 3  205 3.875 205 
62  3 6.312 3  205 0.563 205 
63  7 6.312 3  -42 2.25 210 
64  3 6.312 3  212 0.938 212 
65  7 6.312 3  -43 2.625 217 
66  3 6.312 3  220 2.313 220 
67  3 6.312 3  221 0 221 
68  7 6.312 3  -44 3.688 228 
69  3 6.312 3  228 0.375 228 
70  7 6.312 3  -47 2.063 233 
71  3 6.312 3  235 0.75 235 
72  7 6.312 3  -48 2.438 240 
73  3 6.312 3  243 2.125 243 
74  7 6.312 3  -49 2.813 247 
75  7 6.312 3  -49 3.5 251 
76  3 6.312 3  251 0.188 251 
77  3 6.312 3  258 3.875 258 
78  3 6.312 3  258 0.563 258 
79  7 6.312 3  -53 2.25 263 
80  3 6.312 3  265 0.938 265 
81  7 6.312 3  -54 2.625 270 
82  7 6.312 3  -55 2.313 273 
83  3 6.312 3  274 0 274 
84  3 6.312 3  281 3.688 281 
85  3 6.312 3  281 0.375 281 
86  7 6.312 3  -58 2.063 286 
87  3 6.312 3  288 0.750 288 
88  7 6.312 3  -59 2.438 293 
89  3 6.312 3  296 2.125 296 
90  7 6.312 3  -60 2.813 300 
91  3 6.312 3  304 3.5 304 
92  3 6.312 3  304 0.188 304 
93  3 6.312 3  311 3.875 311 
94  3 6.312 3  311 0.563 311 
95  7 6.312 3  -64 2.25 316 
96  3 6.312 3  318 0.938 318 
97  7 6.312 3  -65 2.625 323 
98  3 6.312 3  326 2.313 326 
99  3 6.312 3  327 0 327 
100  7 6.312 3  -66 3.688 334 
101  3 6.312 3  334 0.375 334 
102  7 6.312 3  -69 2.063 339 
103  3 6.312 3  341 0.750 341 
104  7 6.312 3  -70 2.438 344 
105  3 6.312 3  349 2.125 349 
106  7 6.312 3  -71 2.813 353 
107  3 6.313 3  357 3.5 357 
108  3 6.313 3  357 0.188 357 
109  3 6.313 3  364 3.875 364 
110  3 6.313 3  364 0.563 364 
111  7 6.313 3  -75 2.25 369 
112  7 6.313 3  -76 1.938 372 
113  7 6.313 3  -76 2.625 376 
114  3 6.313 3  380 3.313 380 
115  3 6.313 3  380 0 380 
116  3 6.52 3  387 3.48 387 
117  3 6.313 3  387 0.375 387 
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118  7 6.313 3  -80 2.063 392 
119  3 6.313 3  395 1.75 395 
120  7 6.313 3  -81 2.438 399 
121  7 6.313 3  -81 3.125 403 
122  7 6.313 3  -81 3.813 407 
123  3 6.520 3  410 1.844 410 
124  3 6.313 3  410 0.188 410 
125  3 6.520 3  418 2.805 418 
126  3 6.312 3  418 1.563 418 
127  7 6.312 3  -86 2.25 422 
128  7 6.312 3  -86 2.938 426 
129  7 6.312 3  -86 3.625 430 
130  3 6.520 3  433 0.207 433 
131  3 6.520 3  433 0 433 
132  3 7 3  441 0.688 441 
133  7 7 7  0 0 0 
134  7 7 7  0 0 0 
135  7 7 7  0 0 0 
136  7 7 7  0 0 0 
137  7 7 7  0 0 0 
138  7 7 7  0 0 0 
139  7 7 7  0 0 0 
140  7 7 7  0 0 0 
141  7 7 7  0 0 0 
142  7 7 7  0 0 0 
143  7 7 7  0 0 0 
144  7 7 7  0 0 0 
145  7 7 7  0 0 0 
146  7 7 7  0 0 0 
147  7 7 7  0 0 0 
148  7 7 7  0 0 0 
149  7 7 7  0 0 0 
150  7 7 7  0 0 0 
151  7 7 7  0 0 0 
152  7 7 7  0 0 0 
153  7 7 7  0 0 0 
154  7 7 7  0 0 0 
155  7 7 7  0 0 0 
156  7 7 7  0 0 0 
157  7 7 7  0 0 0 
158  7 7 7  0 0 0 
159  7 7 7  0 0 0 
160  7 7 7  0 0 0 
161  7 7 7  0 0 0 

 


