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Recognizing and visualizing copulas: an approach using
local Gaussian approximation

Geir Drage Berentsen, B̊ard Støve, Dag Tjøstheim and Tommy Nordbø

21st June 2012

Abstract

Copulas are much used to model nonlinear and non-Gaussian dependence between
stochastic variables. Their functional form is determined by a few parameters, but
unlike a dependence measure like the correlation, these parameters do not have a clear
interpretation in terms of the dependence structure they create. In this paper we ex-
amine the relationship between a newly developed local dependence measure, the local
Gaussian Correlation, and standard copula theory. We are able to describe charac-
teristics of the dependence structure in different copula models in terms of the local
Gaussian correlation. In turn, these characteristics can be effectively visualized. More
formally, the characteristic dependence structure can be used to construct a goodness-
of-fit test for bivariate copula models by comparing the theoretical local Gaussian
correlation for a specific copula and the estimated local Gaussian correlation. A Monte
Carlo study reveals that the test performs very well compared to a commonly used
alternative test. We also propose two types of diagnostic plots which can be used to
investigate the cause of a rejected null. Finally, our methods are used on a ”classic”
insurance data set.

1 Introduction

Copula theory goes back to the work of Sklar [1959]. In recent years the use of copulas has
grown fast. The books of Joe [1997] and Nelsen [2006] provide an overview of copula theory,
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including the most common parametric families of copulas and estimating procedures. One of
the main argument for using copula theory is that non-linear dependencies between variables
can be modelled. Thus copula modelling has found many useful applications, in particular in
finance, where non-linear dependencies typically arise between the returns of financal assets,
see e.g. Jaworski et al. [2010], Brigo et al. [2010], Cherubini et al. [2004], Chollete et al.
[2009] and Okimoto [2008].

There are two interrelated issues of copula theory that we will look at in this paper:
i) visualizing and quantifying the nonlinear dependence structure of a copula and ii) use
this to recognize and specify a copula model from given data. Both of these issues will be
explored using the new tool of local Gaussian correlation that was introduced in Tjøstheim
and Hufthammer [2012]. The local Gaussian correlation is a nonlinear dependence measure,
but it retains the standard correlation interpretation based on a family of local Gaussian
approximations.

Typically a copula model contains a few (often only one) parameters that describes
the dependence structure. A problem is that the parameters are difficult to interpret. In
what way do they measure dependence? A very crude characterization of a copula model
is obtained by simulating observations from it and subsequently looking at the resulting
scatter diagram. For instance the Clayton copula whose scatter diagram indicates heavy
tails for negative values is thought to give a possible model for dependence of financial
returns, since it is a common view among finance analysts that the correlations between
financial objects increase as the market is going down. But a scatter diagram is not a very
precise quantification of dependence.

Tjøstheim and Hufthammer [2012] introduce a local correlation measure that is meant
to give a precise mathematical description and interpretation of such phenomena. A brief
survey of this concept is given in Section 2. In Section 3 it will be shown how it can be used
to precisely characterize and visualize the dependence structure for a number of standard
copula models.

The problem of recognizing a copula from the data is the problem of goodness-of-fit. Many
proposals have been made for goodness-of-fit-testing of copula models, which dates back to
Deheuvels [1979]. One has to choose the right copula from a wide range of possibilities. The
most used approach is to select the copula that provides the best likelihood, e.g. by the
Akaike Information Criteria (AIC), see Breymann et al. [2003]. Two recent papers which
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introduce new copula selection methods are Huard et al. [2006] and Karlis and Nikoloupoulos
[2008]. In the first paper the authors propose a Bayesian method to select the most probable
copula family among a given set, whereas the second paper introduce a goodness-of-fit test
for copula families based on Mahalanobis squared distance between original and simulated
data, through parametric bootstrap techniques.

Based on the Rosenblatt transformation (see Rosenblatt [1952]), Breymann et al. [2003]
propose a test procedure, further Chen et al. [2004] developed a test based on the kernel
density estimator. Genest et al. [2009] reviews and performs a power study of the available
goodness-of-fit tests for copulas, and a similar study is performed by Berg [2009].

In goodness-of-fit testing, when a model is rejected, a problem is to identify the cause
of the rejection. This problem has been recognized by Berg [2009]; ”When doing model
evaluation. . . there is still an unsatisfied need for intuitive and informative diagnostic plots.”

In this paper we introduce a new goodness-of-fit test for bivariate copula models based
on the local Gaussian correlation. The test is based on calculating the difference between
the local Gaussian correlation estimated nonparametrically for the data in question and
estimated by using an analytical expression for the local Gaussian correlation for a specific
copula. One type of diagnostic plots are obtained by plotting these estimates together along
the diagonal x1 = x2. We also propose a second type of diagnostic plot which displays the
results of a ”local goodness-of-fit” test. Implementation issues of the goodness-of-fit test are
discussed in section 4 where a simulation study is conducted to assess the power and level
of the proposed test and the diagnostic plots are discussed in Section 5. Finally, a practical
data example is given in Section 6.

2 Local Gaussian approximation

Let X = (X1, X2) be a two-dimensional random variable with density f(x) = f(x1, x2). In
this section we describe how f can be approximated locally in a neighbourhood of each point
x = (x1, x2) by a Gaussian bivariate density

ψ(v, µ(x),Σ(x)) = 1
2π|Σ(x)|1/2 exp

[
−1

2(v − µ(x))TΣ−1(x)(v − µ(x))
]
, (2.1)
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where v = (v1, v2)T is the running variable, µ(x) = (µ1(x), µ2(x))T is the local mean vector
and Σ(x) = (σij(x)) is the local covariance matrix. With σ2

i (x) = σii(x), we define the local
correlation at the point x by ρ(x) = σ12(x)

σ1(x)σ2(x) , and in terms of the local correlation, ψ may
be written as

ψ(v, µ1(x), µ2(x), σ2
1(x), σ2

2(x), ρ(x)) =

1
2πσ1(x)σ2(x)

√
1− ρ2(x)

exp

− 1
2(1− ρ2(x))×

(v1 − µ1(x)
σ1(x)

)2

− 2ρ(x)
(
v1 − µ1(x)
σ1(x)

)(
v2 − µ2(x)
σ2(x)

)
+
(
v2 − µ2(x)
σ2(x)

)2
. (2.2)

First note that the representation in (2.2) is not well-defined unless extra conditiona are
imposed. Actually, as is easy to check, if f(x) is a global Gaussian N (µ,Σ), infinitely many
Gaussians can be chosen whose density pass through the point (x, f(x)). However, these
Gaussian densities are not really the objects we want. We need to construct a Gaussian
approximation that approximates f(x) in a neighborhood of x and such that (2.2) holds at x.
In the case of X ∼ N (µ,Σ) this is trivially obtained by taking one Gaussian; i.e., µ(x) = µ

and Σ(x) = Σ for all x. In fact, these relatisonships may be taken as definitions of the local
parameters for a Gaussian distribution.

In Tjøstheim and Hufthammer [2012] it was demonstrated that for a given neighbour-
hood characterized by a bandwidth parameter b the local population parameters λ(x) =
(µ(x),Σ(x)) or λ(x) = (µ1(x), µ2(x), σ2

1(x), σ2
2(x), ρ(x)) can be defined by minimizing a like-

lihood related penalty function resulting in the equations
∫
Kb(v − x) ∂

∂λj
log(ψ(v, λ(x))[f(v)− ψ(v, λ(x)]dv = 0, j = 1, . . . , 5. (2.3)

where b is a bandwidth parameter, and Kb(v−x) = b−1K(b−1(v−x)) with K being a kernel
function. We define the population value λb(x) as the solutions of these set of equations. It
is assumed that there is a bandwidth b0 such that there exists a unique solution of the set
of equations (2.3) for any b with 0 < b < b0.

It is easy to find examples where (2.3) is satisfied with a unique λb(x). A trivial example
is when X ∼ N (µ,Σ) is Gaussian, where λb(x) = λ(x) = (µ,Σ). The next step is defining
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a step function of a Gaussian variable Z ∼ N (µ,Σ), where we will take µ = 0 and Σ = I2,
the identity matrix of dimension 2. Let Ri, i = 1, . . . , k be a set of non-overlapping regions
of R2 such that R2 = ∪ki=1Ri. Further, let ai and Ai be a corresponding set of vectors and
matrices in R2 such that Ai is non-singular and define the piecewise linear function

X = gs(Z) =
k∑
i=1

(ai + AiZ)1(Z ∈ Ri), (2.4)

where 1(·) is the indicator function. Let Si be the region defined by Si = {x : x = ai +
Aiz, z ∈ Ri}. It is assumed that (2.4) is one-to-one in the sense that Si ∩ Sj = ∅ for
i 6= j and ∪ki=1Si = R2. To see that the linear step function (2.4) can be used to obtain a
solution of (2.3) let x be a point in the interior of Si and let the kernel function K have a
compact support. If v − x is in the support of K, then b can be made small enough so that
v − x ∈ Si. Under this restriction on b, λb(x) = λ(x) ≡ λi = (µi,Σi) where µi = ai and
Σi = AiA

T
i as defined in (2.4). Thus, in this sense, for a fixed but small b, there exists a

local Gaussian approximation ψ(x, λb) of f , with corresponding local means µi,b(x), variances
σ2
i,b(x), i = 1, 2, and correlation ρb(x).

It was shown in Tjøstheim and Hufthammer [2012] that once a unique population vector
λb(x) exists one can let b → 0 to obtain a local population vector λ(x) defined at a point
x. The popolation vectors λb(x) and λ(x) are both consistent with a local log-likelihood
function defined by

L
(
X1, . . . , Xn, λb(x)

)
= n−1∑

i

Kb(Xi − x) logψ(Xi, λb(x))−
∫
Kb(v − x)ψ(v, λb(x)) dv.

(2.5)
for given observations X1, . . . , Xn. This likelihood is taken from Hjort and Jones [1996] where
it was used for density estimation. Here, the Xi’s are iid observations or more generally
from an ergodic time series {Xt}. In the latter case (2.5) could be thought of as a marginal
local likelihood function. The last term of (2.5) is perhaps somewhat unexpected, but it
is this term that forces ψ(x, λb(x)) not to stray away from f(x) as b → 0. Indeed, using
the notation uj(·, λ) = ∂/∂λj logψ(·, λ), by the law of large numbers (or ergodic theorem),
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assuming E{Kb(Xi − x) logψ(xi, λb(x))} <∞, we have almost surely

∂L

∂λj
= n−1∑

i

Kb(Xi − x)uj(Xi, λb(x))−
∫
Kb(v − x)uj(v, λb(x))ψ(v, λb(x)) dv

→
∫
Kb(v − x)uj(v, λb(x))[f(v)− ψ(v, λb(x))] dv (2.6)

as n→∞, where (2.6) can be identified with (2.3). Letting b→ 0 and requiring

∂L/∂λj = 0 (2.7)

leads to
uj
(
x, λb(x)

)
[f(x)− ψ(x, λb(x))] +O(bTb) = 0, (2.8)

so that, ignoring solutions that yield uj
(
x, λb(x)

)
= 0, (2.6) requires ψ

(
x, λb(x)

)
to be close

to f(x), in fact with a difference of the order O(bTb) as b→ 0. The numerical maximization
of the local likelihood (2.5) leads to local likelihood estimates λ̂b(x), including estimates
ρ̂b(x) of the local correlation. It is shown in Tjøstheim and Hufthammer (2012) that under
relatively weak regularity conditions λ̂b(x)→ λb(x) for b fixed, and λb(x)→ λ(x) for b = bn

tending to zero.

2.1 Non-linear transformations of Gaussian variables

To connect the local correlation concept introduced in the preceding section with the copula
concept it is advantageous to consider nonlinear transformations of Gaussian variables. A
continuous one-to-one function g : R2 → R2 with an inverse h = g−1 can be approximated by
a sequence of one-to-one piecewise linear functions such as in (2.4) by letting k increase and
by letting the regions Ri be smaller. It will be seen below if g is continuously differentiable
at z, then a Gaussian representation can be found by Taylor expansion, but unfortunately
it is not unique unless x is restricted, and it cannot be identified with the representation of
the previous section unless there is uniqueness.

Generally if g is continously differentiable at z, the best linear approximation of X = g(Z)
in a neighbourhood N (x) = {x′ : |x′−x| ≤ rx} of x = g(z) transformed from a corresponding
neighbourhood N (z) = {z′ : |z′ − z| ≤ rz} of z is given by
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Uz(Z) = g(z) + ∂g

∂z
(z)(Z − z)

such that X = g(Z) = Uz(Z) + op(|Z − z|), and where ∂g
∂z

is the Jacobi matrix. When
rz → 0, then rx → 0 because of the continuity of g, and in the limit using the continuous
differentiability of g, higher order terms of a Taylor expansion of g(Z) can be neglected in
probability, and in the limit Uz(Z) gives one Gaussian representation of X = g(Z) at the
point x = g(z).

For this representation it is tempting to define the local mean µ(x) and Σ(x) of the density
of X at the point x as the mean and covariance of the Gaussian variable Uz(Z). These are
expressed as functions of x using z = h(x) = g−1(x). Since E(Z) = 0 and Σ(z) = I2 this
results in

µ(x) = g(z)− ∂g

∂z
(z)z = x−

(
∂h

∂x
(x)
)−1

h(x) (2.9)

and
Σ(x) = ∂g

∂z
(z)
(
∂g

∂z
(z)
)T

=
(
∂h

∂x
(x)
)−1((∂h

∂x
(x)
)−1)T

. (2.10)

It is an easy matter to verify that fUz(Z) = ψ(v, µ(x),Σ(x)) yields a representation of type
(2.1).

The representations (2.9) and (2.10) are unique for a given X and g, But for a given
density f(x), it can be generated in several ways, leading to non-uniqueness. This raises
two questions: When can a stochastic variable X be represented as a function of a Gaussian
variable Z and to what degree is the representations in (2.9) and (2.10) unique? The first
question is essentially answered in Rosenblatt [1952]. We state it as a lemma.

Lemma 2.1. Let X have a density fX(x) on R2 with cumulative distribution function
FX(x) =

∫ x1
−∞

∫ x2
−∞ fX(w1, w2) dw1 dw2. Then there exists a one-to-one function g such that

X = g(Z), where Z ∼ N (0, I2).

Proof. We have fX(x) = fX1(x1)fX2|X1(x2|x1). Then U1 = FX1(X1) is uniform. There also
exists a standard normal variable Z1 such that U1 = Φ(Z1), where Φ is the cumulative
distribution of the standard normal density. Hence, X1 = F−1

X1 (Φ(Z1)). In the same manner,
there exists a uniform variable U2 independent of U1 (see Rosenblatt [1952]) such that U2 =
FX2|X1(X2|X1), and there exists a Z2 ∼ N (0, 1) independent of Z1 such that U2 = Φ(Z2),
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and hence X1

X2

 =
 F−1

X1 (Φ(Z1))
F−1
X2|X1

(Φ(Z2)|F−1
X1 (Φ(Z1))

 .= g(Z), (2.11)

where F−1
X2|X1

is interpreted as the inverse of FX2|X1 with X1 fixed (i.e., with U1, Z1 fixed).
Here g is one-to-one due to the strict monotonicity of FX .

As pointed out in Rosenblatt [1952] this representation is non-unique, since we also have
X1

X2

 =
F−1

X1|X2
(Φ(Z1)|F−1

X2 (Φ(Z2))
F−1
X2 (Φ(Z2))

 .= g′(Z ′), (2.12)

where in general g 6= g′ and Z 6= Z ′. This also means that µ′(x) 6= µ(x) and Σ′(x) 6= Σ(x).
However, there may be a set of points (x1, x2) for which the two Rosenblatt represent-

ations (2.11) and (2.12), with ρ and ρ′, respectively, coincide. It is shown in Tjøstheim
and Hufthammer [2012] that ρ(x1, x2) = ρ′(x2, x1) if X1 and X2 are exchangable, i.e.
FX1,X2(x1, x2) = FX1,X2(x2, x1) for all pairs (x1, x2), in which case they coincide along
the diagonal x = (s, s). More generally they would coincide along the curve defined by
FX1(x1) = FX2(x2) (see section 3). Since the two Rosenblatt representations are bases for
any representation of fX(x), (including a density generated by a general functional relation-
ship X = g(Z)), we have uniqueness at points where they coincide. The local parameters
along such curves are consistent with the local parameters derived from the local penalty
function (2.3). Indeed, for a point x where the Rosenblatt representations give a unique
λ(x) = (µ(x),Σ(x)) such that f(x) = ψ(x, λ(x)), a local Gaussian approximation with λb(x)
can be found that satisfies the local penalty equation (2.3) and that converges to λ(x).
Simply choose a linear stepwise representation (2.4), such that x ∈ Si for some i, and take
Ai = Σ1/2(x) and ai = µ(x). Then with a small enough bandwidth, λb(x) = λi = (ai, AiATi )
= (µ(x),Σ(x)), and λb(x) → λ(x) trivially as b → 0. If for a point x there is not a unique
Rosenblatt representation, i.e. off-diagonal terms in the above example, then such an ap-
proach is not possible since there is not a unique λ(x) that could serve a starting point for
the construction. Nevertheless, for such points x, under the regularity conditions mentioned
at the end of the previous sub-section the existence of a unique λ(x) can be determined by
the local penalty function resulting in (2.5) and the local likelihood estimate λ̂(x) converges
towards λ(x) (see Tjøstheim and Hufthammer [2012]), but unlike the points along the curve
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defined by FX1(x1) = FX2(x2) we have not managed to find an explicit expression for λ(x)
for a general x. A simulation experiment confirming these facts are given in section 4, but
first we will derive explicit formulas for ρ(x) along the curve F1(x1) = F2(x2) for several
copulas with Fi = FXi .

3 Local Gaussian correlation for copula models

We start by rephrasing the local parameters given by (2.9) and (2.10) in the previous section
and making it explicit for the local Gaussian correlation in the case when g is the Rosenblatt
transformation (2.11). We will subsequently look at (2.12) and then examine under what
conditions these two transformations will give rise to a unique local Gaussian correlation to
be used in the rest of the paper. For the transformation (2.10) the matrix

∂h

∂x
(x) =

∂h1
∂x1

∂h1
∂x2

∂h2
∂x1

∂h2
∂x2

 (3.1)

is lower triangular and

(
∂h

∂x
(x)
)−1

=
(
∂h1

∂x1

∂h2

∂x2

)−1
 ∂h2

∂x2
0

−∂h2
∂x1

∂h1
∂x1

 ,
which, by (2.10), results in the following local covariance matrix

Σ(x) =
(
∂h1

∂x1

∂h2

∂x2

)−2

(
∂h2
∂x2

)2
−∂h2
∂x1

∂h2
∂x2

−∂h2
∂x1

∂h2
∂x2

(
∂h1
∂x1

)2
+
(
∂h2
∂x1

)2

 .
The local Gaussian correlation is then given by

ρ(x) = ρ(x1, x2) = Σ12(x)√
Σ11(x)Σ22(x)

=
−∂h2
∂x1√(

∂h1
∂x1

)2
+
(
∂h2
∂x1

)2
, (3.2)

where we return to its validity and uniqueness below. Next, consider a continuous random
variable X = (X1, X2) with joint cumulative distribution function F and margins F1(x1)
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and F2(x2). Due to the reprentation theorem of Sklar [1959], F can be written as

F (x1, x2) = C((F1(x1), F2(x2)), (3.3)

where the copula C : [0, 1]2 → [0, 1] is a unique bivariate distribution function with uniform
margins. In the case when F is given by (3.3) we may re-express (2.11) and thus ρ(x1, x2) in
terms of the copula C and the margins F1 and F2. Let U1 and U2 be distributed according
to C and let

C1(u1, u2) = Pr(U2 ≤ u2|U1 = u1)

= lim∆u1→0
C(u1 + ∆u1, u2)− C(u1, u2)

∆u1
= ∂

∂u1
C(u1, u2)

(3.4)

Then, using the notation F2|1 for for the distribution function of X2 given X1, we may write
F2|1(x2|x1) as

F2|1(x2|x1) = P (U2 ≤ F2(x2)|U1 = F1(x1)) = C1(F1(x1), F2(x2)),

and consequently F−1
2|1 (x2|x1) may be written as

F−1
2|1 (x2|x1) = F−1

2

(
C−1

1 (F1(x1), x2)
)
,

where C−1
1 (u, v) is interpreted as the inverse of C1(u, v) with u fixed. It follows that (2.11)

may be written as

g(Z) =
 F−1

1 (Φ(Z1))
F−1

2

(
C−1

1 (Φ(Z1),Φ(Z2))
) (3.5)

Note that this transformation (only with Φ(Z1) and Φ(Z2) replaced by two independent
uniform [0, 1] variables) is a standard way of sampling from the distribution C(F1(x1), F2(x2))
(See e.g. Nelsen, 2006, page 35-37). In the continuous case, g is one-to-one if the copula
density c(u1, u2) satisfies c(u1, u2) > 0 for all points (u1, u2) ∈ [0, 1]2 (This guarantees the
invertibility of C1(u1, u2) with respect to u2). The inverse h = g−1 is then given by

h(X) =
h1(X1, X2)
h2(X1, X2)

 =
 Φ−1 (F1(X1))

Φ−1 (C1 (F1(X1), F2(X2)))

 (3.6)
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Towards finding an expression for ρ(x1, x2) using (3.2) let φ denote the standard normal
density function and let

C11(u1, u2) = ∂2

∂u2
1
C(u1, u2).

Then the two partial derivatives of h involved in (3.2) is given by

∂h1

∂x1
= f1(x1)
φ (Φ(−1) (F1(x1))) , (3.7)

∂h2

∂x1
= C11 (F1(x1), F2(x2)) f1(x1)
φ (Φ(−1) (C1 (F1(x1), F2(x2)))) , (3.8)

where f1 is the marginal density function of X1. Inserting equation (3.7) and (3.8) into (3.2)
the local Gaussian correlation given by (3.2) and model (3.3) may be written as

ρ(x1, x2) = −C11(F1(x1), F2(x2))φ (Φ−1 (F1(x1)))√
φ2 (Φ−1 (C1(F1(x1), F2(x2)))) + C2

11(F1(x1), F2(x2))φ2 (Φ−1 (F1(x1)))
(3.9)

However, repeating the above steps with the Rosenblatt representation (2.12) as a starting
point in stead of (2.11) leads to another local Gaussian correlation ρ′(x1, x2) given by

ρ′(x1, x2) = −C22(F1(x1), F2(x2))φ (Φ−1 (F2(x2)))√
φ2 (Φ−1 (C2(F1(x1), F2(x2)))) + C2

22(F1(x1), F2(x2))φ2 (Φ−1 (F2(x2)))
(3.10)

where C2(u1, u2) = ∂
∂u2
C(u1, u2) and C22(u1, u2) = ∂2

∂u2
2
C(u1, u2). As pointed out in section

2, the local correlation given by (3.9) and (3.10) is only consistent with the local correlation
derived from the penalty function (2.3) at points (x1, x2) where ρ′(x1, x2) = ρ(x1, x2). In the
copula case, when the copula is exchangeable (i.e. C(u1, u2) = C(u2, u1)), these points are
found along the curve defined by F1(x1) = F2(x2). To see this let (x1, x2) be a point along
this curve so that F1(x1) = F2(x2) = u. Then

ρ(x1, x2) = −C11(u, u)φ (Φ−1 (u))√
φ2 (Φ−1 (C1(u, u))) + C2

11(u, u)φ2 (Φ−1 (u))
(3.11)

ρ′(x1, x2) = −C22(u, u)φ (Φ−1 (u))√
φ2 (Φ−1 (C2(u, u))) + C2

22(u, u)φ2 (Φ−1 (u))
(3.12)

11

SNF Working Paper No 12/12



It then follows from echangeability of C that C1(u, u) = C2(u, u) and C11(u, u) = C22(u, u)
and thus ρ(x1, x2) = ρ′(x1, x2). In case the margins are identical which they are if X1 and
X2 are exchangeable, we have equality along the diagonal x1 = x2 and we are recovering
the result mentioned in Tjøstheim and Hufthammer [2012]. In the rest of the paper we take
(3.9) as the local Gaussian correlation along such curves. It will be used for characterizing
the dependence properties of the copulas and for testing goodness of fit.

Note that since φ (Φ−1 (F1(·))) > 0, the sign of ρ(x1, x2) is determined by the sign of
−C11(F1(x1), F2(x2)). To see that this is reasonable, consider a random variable X1 positively
related to the variable X2 in the neighbourhood of (x1, x2), in the sense that m(s) := P (X2 ≤
x2|X1 = s) = C1(F1(s), F2(x2)) is decreasing as s increases (in a neighbourhood of x1).
Then since m′(s) < 0, we have that −C11(F1(x1), F2(x2)) > 0 and thus ρ(x1, x2) > 0 in the
neighbourhood of (x1, x2).

When X1 and X2 are independent their copula is the independence copula C(u1, u2) =
u1u2. Then C11(u1, u2) = 0 which implies that ρ(x1, x2) = 0 along the curve F1(x1) =
F2(x2). In Tjøstheim and Hufthammer [2012] it is shown that independence implies ρ(x) = 0
everywhere and that a necessary and sufficient condition for independence is that ρ(x) ≡ 0,
µi(x) ≡ µi(xi), σ2

i (x) ≡ σ2
i (xi), i = 1, 2. We have not been able to find examples where

ρ(x) ≡ 0 and where we do not have independence.
Tjøstheim and Hufthammer [2012] consider the connection between ρ(x1, x2) and the

upper and lower tail coefficient given by

λu = lim
q→1−

P (F2(X2) > q|F1(X1) > q) and λl = lim
q→0+

P (F2(X2) ≤ q|F1(X1) ≤ q).

Due to the local Gaussian representation it can be shown that under a weak monotonicity
condition the lower tail coefficient can be expressed as

λl = 2 lim
s→−∞

Φ
s
√√√√1− ρ(s, s)

1 + ρ(s, s)

 ,
It is seen that if there is lower tail dependence, we must have ρ(s, s)→ 1 as s→ −∞. Thus
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by (3.9), ρ(x1, x2) for copula models with lower tail dependence should satisfy

lim
s→−∞

ρ(s, s) = lim
q→0+

−C11(q, q)φ (Φ−1 (q))√
φ2 (Φ−1 (C1(q, q))) + C2

11(q, q)φ2 (Φ−1 (q))
= 1. (3.13)

For exchangeable copulas with lower tail dependence λl, it can be shown that
limq→0+ φ2 (Φ−1 (C1(q, q))) = φ2 (Φ−1(λl/2)) 6= 0. So for (3.13) to hold when λl 6= 0 we
must have that limq→0+ −C11(q, q)φ (Φ−1 (q)) =∞. This can for example be verified for the
Clayton copula. For the speed at which ρ(s, s)→ 1 for the Clayton copula we refer to figure
1 in the case of standard Gaussian margins.

3.1 Examples

In practice, given a copula, the formula (3.9) often becomes quite complicated. As a con-
sequence, for the examples in section 3.1.1 and section 3.1.2, we only formulate the functions
C1 and C11 and refer to figure 1 - 4 for the characteristics of ρ(x1, x2) for each copula. In the
examples we have simply used standard normal margins for both X1 and X2 and all copulas
considered are exchangeable so that the local correlation given by (3.9) is well defined along
the diagonal x1 = x2. In figures 1 - 4 a) we have plotted ρ(s, s) against s. The copula
parameters in these plots are chosen so that they correspond to a specific value of Kendall’s
tau (τ = 0.2, 0.4, 0.6, 0.8), which in general is uniquely related to the (one-parameter) copula
C by the formula

τ = m(θ) = 4
∫ ∫

[0,1]2
C(u, v) dC(u, v)− 1. (3.14)

We have not been able to find an analytic expression for ρ(x1, x2) for general (x1, x2), but
using the local likelihood algoritm ρ(x1, x2) can be estimated for all (x1, x2) for which there
is data. Figures 1 - 4 b) display the estimated local correlation based on one realisation
of n = 500 samples from each of the copula models considered, with copula parameter i
corresponding to τ = 0.4. There is some boundary bias in the estimation by the estimated
dependence pattern revealed in figures 1 - 4 b) are consistent with the theoretical ones along
the diagonal in figures 1 - 4 a). See also the comparison made in figure 7.
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3.1.1 Archimedean copulas

An important class of copulas is the class of Archimedean copulas, which have been extens-
ively studied. Archimedean copulas are popular, because they allow dependence modeling
with only one parameter governing the strength of dependence. These copulas are com-
pletely defined by their so-called generator function ϕ, with the following properties. Let
ϕ : [0, 1] → [0,∞] be a continuous and strictly decreasing function with ϕ(1) = 0 and
ϕ(0) ≤ ∞. Define the pseudo-inverse of ϕ with domain [0,∞] by

ϕ[−1] =

ϕ
−1(t), 0 ≤ t ≤ ϕ(0),

0, ϕ(0) < t ≤ ∞.
(3.15)

A bivariate Archimedean copula is a copula on the form

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2)), (3.16)

where ϕ satisfies the above assumptions and is convex. For simplicity we will only consider
Archemedean copulas where ϕ(0) = ∞. The generator function is then said to be strict
and we may replace the pseudo-inverse ϕ[−1] by the ordinary functional inverse ϕ−1. The
functions C1 and C11 needed to compute ρ(x1, x2) are then easily obtain by differentiation
of equation (3.16) with respect to u1

C1(u1, u2) = ϕ′(u1)
ϕ′ (C(u1, u2)) . (3.17)

C11(u1, u2) = ϕ′′(u1)ϕ′ (C(u1, u2))2 − ϕ′(u1)2ϕ′′ (C(u1, u2))
ϕ′ (C(u1, u2))3 . (3.18)

In the following three examples we consider the commonly used Archimedean copulas
Clayton, Gumbel and Frank.

Example 3.1 (Clayton copula). The Clayton copula is an asymmetric copula, exhibiting
greater dependence in the negative tail than in the positive (i.e. lower tail dependence). The
generator for the Clayton copula is ϕ(t) = 1

θ
(t−θ − 1) for θ ≥ −1. The Clayton copula can
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thus be written as
CCl
θ (u1, u2) = (u−θ1 + u−θ2 − 1)−1/θ,

with derivatives

C1(u1, u2) =
(
1 + uθ1(u−θ2 − 1)

)− θ+1
θ

C11(u1, u2) = (θ + 1)uθ−1
2 (1− u−θ2 )(1 + uθ1(u−θ2 − 1))−1/θ−2

Since C11(q, q) = (θ + 1)q−1(1 − qθ)(2 − qθ)−1/θ−2 → 0 as q → 1− we have that ρ(s, s) → 0
as s→∞. On the other hand, it can be shown that −C11(q, q)φ (Φ−1 (q))→∞ as q → 0+

so that ρ(s, s) → 1 as s → −∞. These features can be seen in figure 1. These plots give a
directly interpretable local dependence structure in terms of local correlation.

Figure 1: Local gaussian correlation for the clayton copula: (a) along the diagonal x1 = x2;
(b) estimated based on n = 500 observations.
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Example 3.2 (Gumbel copula). The Gumbel copula is also an asymmetric copula, exhibit-
ing greater dependence in the positive tail than in the negative (i.e. upper tail dependence).
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Its generator function is ϕ(t) = (− ln t)θ for θ ≥ 1, thus the Gumbel copula can be written
as

CGu
θ (u1, u2) = exp

[
− ((− ln u1)θ + (− ln u2)θ)1/θ

]
.

The functions C1 and C11 are quite complicated and are therefore not given here. The
characteristics of ρ(x1, x2) for the Gumbel copula can be seen in figure 2 where we clearly
see the upper tail dependence numerically quantified in terms of the local correlation.

Figure 2: Local gaussian correlation for the gumbel copula: (a) along the diagonal x1 = x2;
(b) estimated based on n = 500 observations.
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Example 3.3 (Frank copula). Define qz = e−θz − 1. The generator for the Frank copula is
ϕ(t) = − ln(qt/q1). Then the Frank copula may be written as

CFr
θ (u1, u2) = −θ−1 ln {1 + qu1qu2/q1}
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The derivatives C1 and C1 are

C1(u1, u2) = qu1qu2 + qu2

qu1qu2 + q1

C11(u1, u2) =
q′u1qu2(q1 − qu2)
(qu1qu2 + q1)2

It is easily seen that C11(q, q) → 0 when q → 0+ and when q → 1−. Thus the ρ(x1, x2)
goes to zero in both the upper and lower tail. This feature is reflected in figure 3; close to
constant dependence in the center which vanish in the tails.

Figure 3: Local gaussian correlation for the gumbel copula: (a) along the diagonal x1 = x2;
(b) estimated based on n = 500 observations.
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3.1.2 Elliptical copulas

Elliptical copulas are simply the copulas of elliptical distributions. The key advantage of
elliptical copula is that one can specify different levels of correlation between the marginals,
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but a disadvantage is that elliptical copulas typically do not have closed form expressions.
The most commonly used elliptical distributions are the Gaussian and Student-t distribu-
tions.

Example 3.4 (Gaussian copula). For a given correlation matrix Σ =
1 ρ

ρ 1

 the Gaussian

copula with correlation matrix Σ can be written as

CGauss
Σ (u1, u2) = ΦΣ(Φ−1(u1),Φ−1(u2)) (3.19)

where ΦΣ is the joint bivariate distribution function of a Gaussian variable with mean vector
zero and correlation matrix Σ. In general, when (X1, X2) is Gaussian with mean vector zero
and correlation matrix Σ, then X1|X2 = x2 ∼ N(ρx2, 1−ρ2). It follows that for the Gaussian
copula

C1(u1, u2) = P (U2 ≤ u2|U1 = u1) = P (Φ−1(U2) ≤ Φ−1(u2)|Φ−1(U1) = Φ−1(u1))

= Φ
(

Φ−1(u2)− ρΦ−1(u1)√
1− ρ2

)

Letting R = Φ−1(u2)−ρΦ−1(u1)√
1−ρ2

and differentiating this expression once more with respect to u1

we get
C11(u1, u2) = −ρ√

1− ρ2φ(Φ−1(u1))
φ(R)

Thus for a Gaussian copula model CGauss(F1(x1), F2(x2)) with arbitrary margins F1 and F2,
ρ(x1, x2) is

ρ(x1, x2) = −C11(F1(x1), F2(x2))φ (Φ−1 (F1(x1)))√
φ2 (Φ−1 (C1(F1(x1), F2(x2)))) + C2

11(F1(x1), F2(x2))φ2 (Φ−1 (F1(x1)))

=
φ(R) ρ√

1−ρ2

φ(Φ−1(F1(x1)))
φ(Φ−1(F1(x1)))√

φ(R)2 + φ2(R) ρ2

1−ρ2
φ2(Φ−1(F1(x1)))
φ2(Φ−1(F1(x1)))

= ρ√
1− ρ2 + ρ2 = ρ

(3.20)

This is of course valid for all (x1, x2), not only on a curve F1(x1) = F2(x2), and it shows
that a constant local Gaussian correlation is a feature of the Gaussian copula rather than
the bivariate Gaussian distribution. Note that the local mean and local variance are not in
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general constant for non-Gaussian marginals. For a non-Gaussian copula, ρ(x1, x2) will in
general depend on the margins. It remains to prove the converse statement that ρ(x) = c,
(−1 < c < 1, c 6= 0) implies the Gaussian copula. We do not know of any other than the
Gaussian that has this property.

Figure 4: Local gaussian correlation for the gaussian copula: (a) along the diagonal x1 = x2;
(b) estimated based on n = 500 observations (where the copula parameter is ρ = 0.5877).
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Example 3.5 (T-copula). In the case that (X1, X2) is t-distributed with ν degrees of freedom
and correlation coefficient ρ, we have that X1|X2 = x2 is t-distributed with ν + 1 degrees
of freedom, expected value ρx2 and variance

(
ν+x2

2
ν+1

)
(1 − ρ2). With tν as the standard t-

distribution function, a similar argument as for the Gaussian copula leads to

C1(u1, u2) = tν+1

t−1
ν (u2)− ρt−1

ν (u1)√
(ν+t−1

ν (u1)2)(1−ρ2)
ν+1

 := tν+1(R),

19

SNF Working Paper No 12/12



and with ftv as the standard t-density function and b =
√

(ν+t−1
ν (u1)2)(1−ρ2)

ν+1

C11(u1, u2) = ∂R

∂u1
ftν+1(R) = −ftν+1(R)

ftν (t−1
ν (u1))b2

(
ρb+ 1− ρ2

ν + 1 t
−1
ν (u1)R

)
,

No simple formula for ρ(x1, x2) comes as a result of this. In figure 5 a) we see that ρ(s, s)
increase towards each tail which is consistent with the t-copula having both upper and lower
tail-dependence.

Figure 5: Local gaussian correlation for the student t-copula: (a) along the diagonal x1 = x2;
(b) Estimated based on n = 500 observations.
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Example 3.6. (Role of margins) It is of great interest to investigate how the choice of mar-
gins affects the local Gaussian correlation. For many combinations of marginal distributions
ρ(x1, x2) typically reveals the same pattern as long as the copula is kept fixed. In figure 6 we
have plotted ρ(x1, x2) along the diagonal for the t-copula (4 degrees of freedom, ρ = 0.58),
but with margins F1 = F2 = tv where tv is the t-distribution function with v degrees of
freedom. We have used four different degrees of freedom v. In this case we see that the the
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choice of margins only affects the speed at which ρ(s, s) goes to 1 in the tails. This is quite
clear since the degrees of freedom determines the rate at which tv(x) → 0, 1 as x → ±∞,
which in turn influences the rate at which the numerator of (3.2) goes to ∞.

Figure 6: ρ(x1, x2) for the t-copula with 4 degrees of freedom and ρ = 0.587 (τ = 0.4). Both
margins are t-distributed with v degrees of freedom, v = 1, 4, 8, 100.
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4 Evaluating copula models

Given iid observations X1, . . . , Xn from F (x1, x2) = C(F1(x1), F2(x1)) consider the issue of
using local Gaussian correlation to test the null hypothesis

H0 : C ∈ C, C = {Cθ : θ ∈ Θ}, (4.1)

where Θ is the parameter space. Let ρθ(·) denote the local Gaussian correlation of the
distribution function Cθ(F1(x1), F2(x1)) (given by (3.9)). A natural approach is to compare
the function ρθ(·) estimated under H0 with the nonparametric estimate described in section
2. In the following section we discuss how a plug-in estimator of ρθ can be obtained by
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replacing θ, F1 and F2 in the analytical expression (3.9) with corresponding estimates under
H0.

4.1 Parametric estimation of local Gaussian correlation

Since ρθ(·) depends on the margins F1 and F2 we would, for a full parametric approach, need
to make the additional parametric assumption that

H
′

0 : F1 ∈ F1, F2 ∈ F2,

and thus restricting ourselves to the more narrow null hypothesis H0 ∩ H
′
0. This problem

may be overcome by estimating Fj by the empirical distribution function

F̂j(x) = 1
n

n∑
i=1

1(Xij ≤ x), j = 1, 2. (4.2)

The same issue is also encountered when estimating the copula parameter θ under H0,
where a full maximum likelihood approach or the ”Inference Functions for Margins” (IMF)
approach [see Joe, 1997] requires the additional assumption H

′
0. This assumption can be

avoided by replacing Fj in the likelihood by the empirical distribution function F̂j(x) (4.2).
This method is denoted the pseudo-likelihood [Demarta and McNeil, 2005] or the canonical
maximum likelihood [Romano, 2002]. To avoid that the copula density blows up at the
boundary of [0, 1]2 one typically base the pseudo-likelihood estimation on the scaled ranks
U1 = (U11, U12) . . . , Un = (Un1, Un2) where Uij = nF̂j(Xij)/(n+1). These values are called the
pseudo-observations, and given independent observations X1, ..., Xn from C(F1(x1), F2(x1))
they can be interpreted as a sample from the underlying copula C. However, one should
note that the pseudo-observations are not mutually independent. By using the pseudo-
observations one could also estimate the copula parameter using the relation to Kendall-s
tau given by equation (3.14). For other rank-based estimators see Tsukahara [2005] and
Chen et al. [2006].

Let θn = θn(U1, . . . , Un) denote an estimate of the copula parameter under H0 based
on the pseudo observations (U1, . . . , Un). Then a plug-in estimator ρθn(·) of ρθ(·) is given
by (3.9) with θ replaced by θn and with the marginal distribution functions Fj replaced by
F̂j, j = 1, 2. Let ρn,b(·) denote the estimate obtained by using the local likelihood method
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described in section 2. In general, ρθn(·) will converge considerably faster towards ρθ(·) than
ρn,b(·) since it is based on F̂j and θn which has the ordinary parametric convergence rate,
whereas (Tjøstheim and Hufthammer [2012]) ρn,b(·) has a substantially slower rate. Figure
7 displays the estimates ρθn(·) and ρn,b(·) along the diagonal when F1 and F2 are standard
gaussian and C is the Clayton copula. In figure 7 (a) the estimates are based on n = 500
observations and in figure 7 (b) n = 5000. Note that ρn,b(·) is biased. This bias can be
adjusted for, but this problem will be studied generally in a separate publication.

Figure 7: Plot of the true local Gaussian correlation ρθ(s, s), the parametric estimate ρθn(s, s)
and the nonparametric estimate ρn,b(s, s) against s for the Clayton copula with standard
normal margins: (a) n = 500, b1 = b2 = 1; (b) n = 5000, b1 = b2 = 0.5
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4.2 A bootstrap based Goodness-of-fit test

We now turn to the problem of constructing a goodness-of-fit test for H0. Having established
a parametric estimate ρθn of the local Gaussian correlation under H0 we propose to base a
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goodness-of-fit test on the process

Pn(·) = ρn,b(·)− ρθn(·), (4.3)

where ρn,b(·) is the estimate obtained by using the local likelihood method described in
section 2. Aggregation of P 2

n on R2 is done over a prespecified grid (x1, . . . , xp) by

Tn =
p∑
i=1

Pn(xi)2, (4.4)

where large values of Tn lead to the rejection of H0. By the construction of Tn it is clear
that its asymptotic distribution (when scaled properly by some function δ(n, b)) in general
depends on the underlying copula and the parameter θ, which in turns means that critical
values can not be tabulated by means of the asymptotic properties. Moreover, it is known
(see e.g. Terasvirta et al. [2010] chapter 7.7) that in general the asymptotics of functional
tests like Tn are not very accurate. We therefore use a parametric bootstrap similar to that
of Genest et al. [2009] (see also Stute et al. [1993]) to obtain approximate P-values. The
parametric bootstrap procedure is as follows:

Parametric bootstrap

1. Estimate θ, F1 and F2 by θn = θn(U1, . . . , Un), F̂1 and F̂2.

2. Obtain ρn,b(·) by the local likelihood method and ρθn(·) by replacing θ, F1 and F2 in
(3.9) by θn, F̂1 and F̂2. Compute the value of Tn.

3. For some large integer R, repeat the following steps for every k ∈ {1, . . . , R}:

(a) Generate a random sample X∗1k, . . . , X∗nk from the distribution
F ∗(x) = Cθn(F̂1(x1), F̂2(x2)).

(b) Compute T ∗n,k by repeating step 1 and 2 for this sample.

The P-value for this test can then be approximated by R−1∑R
k=1 1(T ∗n,k > Tn).

In the Monte Carlo study in section 4.4 we only consider one-parameter copulas so
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we have chosen to estimate θ by θn = m−1(τ̂) where τ̂ is the sample Kendall’s tau and
m is defined by 3.14. The margins F1 and F2 are typically estimated by their empirical
counterpart given by (4.2), but for n small we suggest using smoothed nonparametric
estimates.

Remember that the local likelihood estimate ρn,b(·) is only consistent with the ana-
lytical expression (3.9) along the curve F1(x1) = F2(x2). This means that each gridpoint
xi = (xi1, xi2), i = 1, . . . p should be chosen so that F̂1(xi1) ≈ F̂2(xi2). For example, given
suitable values xi1, i = 1, . . . , p one can take xi2 = F̂−1

2 (F̂1(xi1)), where F̂j is given by
(4.2). Such a curve is illustrated in figure 8. However, this is somewhat restrictive and
we therefore provide a second bootstrap procedure which does not rely on the analytical
expression (3.9) but where we instead estimate ρθ by monte carlo approximation:

Double parametric bootstrap

1. Estimate θ, F1 and F2 by θn = θn(U1, . . . , Un), F̂1 and F̂2.

2. Obtain ρn,b(·) by the local likelihood method and ρθn(·) by monte carlo approximation:

(a) For some (preferable large) integer m ≥ n generate a random samle V ∗1 , . . . , V ∗m
from the distribution F ∗(x) = Cθn(F̂X1(x1), F̂X2(x2)).

(b) Approximate ρθn(·) by ρn,b(·) based on V ∗1 , . . . , V
∗
m.

(c) Compute the corresponding value of Tn.

3. For some large integer R, repeat the following steps for every k ∈ {1, . . . , R}:

(a) Generate a random samle X∗1k, . . . , X∗nk from the distribution
F ∗(x) = Cθn(F̂1(x1), F̂2(x2)).

(b) Compute T ∗n,k by repeating step 1 and 2 for this sample.

The P-value for this test can then be approximated by R−1∑R
k=1 1(T ∗n,k > Tn).

In Genest et al. [2009] a similar bootstrap procedure is used for a number of test
statistics in the context of copula goodness-of-fit testing. There it is concluded that for the
double bootstrap to be efficient the number m of repetitions must be substantially larger
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Figure 8: Plot of the curves x2 = F−1
2 (F1(x1)) and x2 = F̂−1

2 (F̂1(x1)) when the data comes
from Cθ(φ(x1), t4(x2)), where Cθ is the Clayton copula with θ = 3, φ is the standard normal
distribution function and t4 is the Student’s t-distribution function with 4 degrees of freedom.
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than the sample size n (minimum m = 2500 when n = 150). In our case we can expect that
even larger values of m is required since a larger m is balanced out by a smaller bandwidth
b. This makes the double-boostrap computational demanding and, consequently, we only
considered the one-level parametric bootstrap in the simulation study in section 4.4. The
advantage of this boostrap procedure is that we can choose the grid (x1, . . . , xp) freely and
that it can be used whenever the analytical expression (3.9) is not available. The selection
of gridpoints can be done as in Jones and Koch [2003] and Berentsen and Tjøstheim [2012]:
First place a regular grid over the area of interest and then select the gridpoints satisfying
f̂(xi) > C for some constant C and a density estimator f̂ . Alternatively, if the user is
interested in a good fit in a particular region the grid can be specified manually, for example
in the context of risk management where the fit of the tails are specially important.

4.3 Choice of bandwidth

Choosing the correct bandwidth for the estimate ρn,b is in general a difficult task and an im-
portant topic for future research. A practical bandwidth algorithm is proposed by Tjøstheim
and Hufthammer [2012], but when testing H0 : C ∈ C we may choose the bandwidth such
that it is optimal if H0 is true. In general, when the distribution function of X is given by
F (x) = Cθ(F1(x1), F2(x2)) the mean sum of squared error over a grid (x1, . . . , xp) is given by

MSSE(ρn,b(·)) = E

( p∑
i=1

(ρn,b(xi)− ρθ(xi))2
)

(4.5)

Since ρθn(·) converges faster than ρn,b(·) (under H0) it is reasonable to choose b as the
minimizer of

M̂SSE(ρn,b(·)) = E∗
(

n∑
i=1

(ρn,b(xi)− ρθn(xi))2
)

(4.6)

where the expectation E∗ is with respect to the distribution function F ∗(x) =
Cθn(F̂1(x1), F̂2(x2)) estimated underH0. If the grid is the same as for the test statistic Tn, this
amounts to minimising the bootstrap mean of the statistic Tn, i.e. M̂SSE(ρn,b(·)) = E∗ (Tn).

Table 1 reports bandwidth estimates based on minimizing (4.6). For simplicity b1 =
b2 = b. The resampling distribution F ∗(x) = Cθn(F̂1(x1), F̂2(x2)) is calculated from a single
sample from the copula model F (x) = Cθ(F1(x1), F2(x2)), with the variations n = 250, 500
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and τ = 0.2, 0.4. Standard normal margins where used, i.e. F1 = F2 = Φ. For comparison,
the minimiser of (4.5) (which is computed by monte carlo integration) is given in parentheses.
Figure 9 displays M̂SSE(ρn,b(·)) as a function of b when C is the Clayton copula.

Not supricingly, neither (4.5) nor (4.6) has a minimum for the Gaussian copula (both
decrease as b increases). This is a result of the local Gaussian likelihood beeing equivalent
with the global Gaussian likelihood when b → ∞. However, it is not recommended to use
a very large bandwidth when testing for the Gaussian copula, since too much smoothing
results in poor power when the null hypothesis is false.

Figure 9: M̂SSE(ρn,b(·)) versus b for the Clayton copula.
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Table 1: Estimated bandwidth based on M̂SSE(ρn,b(·)) calculated from a single sample from
each copula model for n = 250, 500 and τ = 0.2, 0.4. The minimizer of MSSE(ρn,b(·)) is
given in the parentheses.

Copula τ = 0.2 τ = 0.4
n = 250 n = 500 n = 250 n = 500

Clayton 0.9731(1.0536) 0.9710(0.9515) 0.8465(0.8525) 0.8116(0.7955)
Gumbel 1.1030(1.0674) 0.9198(0.9350) 1.0084(0.9602) 0.9116(0.8896)
Frank 1.4065(1.7846) 1.0166(1.0423) 0.8545(0.7824) 0.7165(0.7122)
Gaussian ∞ ∞ ∞ ∞
t4 0.9176(0.8728) 0.8290(0.7778) 0.8786(0.7977) 0.7675(0.7055)

4.4 Simulation study

A Monte Carlo study is performed to assess the finite-sample properties of the proposed
goodness-of-fit test (4.4) (based on the one-level parametric bootstrap). In order to examine
its performance, we compare it with a much used test proposed by Genest and Rémillard
[2008].

This particular test is chosen because of its good overall performance in the simulation
studies of Genest et al. [2009] and Berg [2009]. The test is based on the empirical copula
process

Cn(u) = 1
n

n∑
i=1

1(Ui1 ≤ u1, Ui2 ≤ u2), (4.7)

where Ui = (Ui1, Ui2) i = 1, . . . , n are the pseudo-observations and u = (u1, u2) ∈ [0, 1]2. A
natural test consist in comparing a distance between Cn and an estimate Cθn of C obtained
under H0. Then a goodness-of-fit test may be based on the Cramer-von-Mise type statistic

An = n
∫

[0,1]2
{Cn(u)− Cθn(u)}2dCn(u), (4.8)

which in turn may be estimated by Ân = ∑n
i=1{Cn(Ui) − Cθn(Ui)}2. Further one proceed

by parametric bootstrap analogue to the first procedure described in section 4.2 to find an
approximate P-value for the test. If an analytical expression for Cθ is not available one
may resort to a double parametric bootstrap analogue to the second bootstrap procedure
described in section 4.2. For a more detailed description of these test procedures we refer to
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Genest et al. [2009] or Berg [2009].
We are interested in examining the nominal level (arbitrarily fixed at 5 % throughout

the study) and the power against fixed alternatives. The simulation design is as follows:

• Five H0 copulas: Clayton, Gumbel, Frank, Gaussian and Student with 4 degrees of
freedom

• Five H1 copulas: Clayton, Gumbel, Frank, Gaussian and Student with 4 degrees of
freedom

• Two degrees of global dependence: Kendall’s tau τ = {0.2, 0.4}

• Two sample sizes: n = {250, 500}

For every combination of the above setup, a sample of size n is drawn from C(F1(x1), F2(x2))
where C is the copula under H1 with dependence parameter corresponding to τ . As margins
we have used F1 = F2 = Φ, but when testing H0 : Clayton against H1 : Gaussian we have also
considered F1 = F2 = t4 (labelled Gaussian∗) and F1 = Φ, F2 = t4 (labelled Gaussian∗∗). The
test statistics for our proposed test (4.4) and for the alternative test (4.8) is then computed
under H0, and P-values are estimated using the parametric bootstrap procedure described
in section 4.2. In the estimation of (4.4) the bandwidth b = b1 = b2 is taken from table
1, except when H0 is Gaussian in which case we put b1 = b2 = 1. The prespecified grid
(x1, . . . , xp) are 10 fixed points along the diagonal, except in the case when F1 = Φ, F2 = t4,
in which case we have used 10 fixed point along the curve x2 = t−1

4 (Φ(x1)) (corresponding to
the curve F1(x1) = F2(x2)). Choosing the grid in all cases according to x1 = F̂−1

1

(
F̂2(x2)

)
would lead to very similar results. The procedure is repeated over 500 independent runs to
estimate the nominal level and power for the test for each case. The number of bootstrap
samples was fixed at R = 500.

Table 2 reports the level and power of the test (4.4) and the test (4.8) (in parenthesis).
Each line of the table shows the percentage of rejection of H0 associated with the two
tests for different combinations of sample size and dependence, and given a choice of the
copula under H0 and a true underlying copula. The nominal levels match relatively well
the prescribed size of 5%. However, in some cases the level is slightly underestimated. The
power of our proposed test is very good compared to the An based test, and the power of
the An based test in our simulation study corresponds very well with the power found in
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similar studies by Genest et al. [2009] and Berg [2009]. Note that for testing the Gaussian
and Student hypothesis, powers are in general lower than for testing Clayton, Gumbel and
Frank hypothesis. This is also in line with the previous mentioned studies.

Note that there is a rather large asymmetry in power when testing case (a); H0 : Gaussian
copula, when H1 is the t-copula with 4 degrees of freedom and case (b); H0 : t-copula
with 4 degrees of freedom, when H1 is the Gaussian copula. We investigated this feature
further in the case n = 250 and τ = 0.4 by considering the average estimate of ρn,b(xi) and
ρθn(xi) (under the H0) in the selected gridpoints of the 500 independent samples used in the
simulation study. The result can be seen in figure 10. We see that even though ρn,b(xi) and
ρθn(xi) are changing roles, ρn,b(xi) seems to be underestimating in the tails of the student
t-copula in case a). Thus ρn,b(xi) is closer to ρθn(xi), which in turns means that Tn does
not capture the difference between ρn,b(xi) and ρθn(xi) in case (a) to the same degree as in
case (b). Case (a) and (b) are also the only cases where the power did not increase with
the level of dependence. Indeed, as was seen in figure 4 the local Gaussian correlation for
the student t-copula becomes more constant as the level of dependence increase and thus
resembling more the Gaussian structure.

It is quite clear that the power of the test dependends strongly on the choice of gridpoints
(x1, . . . , xp) and for a arbitrary grid (not restricted by F̂1(x1i) = F̂2(x2i)) the double bootstrap
procedure must be employed. However, when testing for the Gaussian copula we do not
face the uniqueness problems discussed in section 2.1 since ρ(x1, x2) = ρ′(x1, x2) = ρ so
for this test we can choose the grid freely. An obvious case where we can improve power
by expanding the grid is when the alternative hypothesis is the student t-copula. This is
because the t-copula also exhibits negative dependence along the off-diagonal when the level
of dependence is small. To illustrate this we added two points along the off-diagonal to the
grid and repeated the simulation study for this particular setup (H0: Gaussian, H1: student
t-copula v = 4 degrees of freedom). The result can be seen in table 2 in the row labelled
Student 4 df∗. Adding just these two points leads to a very significant increase of power.

An obvious drawback of this simulation study is that we have focused on standard normal
margins. It is therefore difficult to make too categorical conclusions about the power of the
test since the result may vary according to which margins we choose. For example, a smaller
experiment with t-distributed margins revealed that larger sample sizes was needed to obtain
reasonable levels and we also had to choose gridpoints further out in the tails to obtain good
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power. This can partially be explained by figure 6 where it is seen that ρ(s, s)→ 1 slower as
the degrees of freedom of the t distributed margins decrease. This feature is also the case for
the other copulas considered in this paper. Thus, to discriminate between two copulas with
different types of tail-dependence ρθn(x1, x2) must be compared with ρn,b(x1, x2) further out
in the tails when the margins themselves are heavy-tailed.

Figure 10: Average estimate of ρn,b(xi) and ρθn(xi) in case (a) and case (b) when n = 250
and τ = 0.4.
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Copula under H0 True copula τ = 0.2 τ = 0.4
n = 250 n = 500 n = 250 n = 500

Clayton Clayton 5.8(4.6) 5.2(5.0) 5.2(5.2) 4.4(5.0)
Gumbel 97.6(90.0) 100.0(99.8) 100.0(100.0) 100.0(100.0)
Frank 77.8(60.3) 96.8(88.8) 97.2(97.6) 99.8(100.0)
Gaussian 76.6(58.2) 92.6(77.8) 97.0(95.4) 100.0(100.0)
Gaussian∗ 61.8 71.0 81.4 95.4
Gaussian∗∗ 66.8 77.6 83.8 93.0
Student 4 df 82.6(69.2) 97.6(84.6) 99.6(97.8) 100.0(100.0)

Gumbel Clayton 99.0(81.2) 100.0(99.0) 100.0(99.8) 100.0(100.0)
Gumbel 5.4(5.8) 6.4(5.2) 3.0(5.2) 5.2(4.8)
Frank 66.0(20.2) 90.6(49.0) 89.4(50.2) 99.6(92.2)
Gaussian 52.6(11.4) 83.6(36.0) 73.8(27.8) 96.2(69.0)
Student 4 df 37.0(20.2) 76.8(54.6) 71.8(36.6) 98.0(80.4)

Frank Clayton 68.0(50.6) 94.6(85.6) 97.6(95.8) 100.0(100.0)
Gumbel 50.4(40.4) 87.8(62.8) 86.2(76.0) 100.0(97.4)
Frank 3.2(4.8) 4.0(4.6) 2.4(4.6) 4.2(5.0)
Gaussian 9.4(8.0) 20.6(15.6) 35.4(19.2) 69.8(49.6)
Student 4 df 82.2(27.8) 99.6(52.0) 95.0(46.0) 100.0(87.0)

Gaussian Clayton 59.4(44.2) 90.8(73.6) 98.4(93.4) 100.0(100.0)
Gumbel 24.6(33.2) 64.6(42.8) 51.6(58.2) 95.0(82.4)
Frank 7.8(7.6) 14.0(7.0) 28.2(21.4) 65.0(35.4)
Gaussian 4.6(5.2) 4.0(4.8) 3.8(5.0) 4.0(5.4)
Student 4 df 24.0(20.6) 78.4(26.6) 11.0(21.2) 60.0(23.8)
Student 4 df† 35.4 82.8 34.2 79.4

Student 4 df Clayton 77.4(35.8) 97.0(69.8) 97.6(88.4) 100.0(99.6)
Gumbel 51.2(23.0) 82.6(34.0) 64.6(45.8) 91.2(63.4)
Frank 78.4(9.2) 99.0(16.8) 91.8(26.8) 100.0(48.4)
Gaussian 64.6(5.2) 92.8(7.8) 61.8(4.0) 92.0(2.8)
Student 4 df 4.4(5.4) 4.8(5.0) 2.8(4.8) 4.8(4.8)

Table 2: Percentage of rejection of H0 by the Tn-based test and the An-based test (in par-
anthesis) for data sets of different sizes arising from different copula models with dependence
τ = 0.2 or τ = 0.4. ∗ Power when both margins are t-distributed. ∗∗ Power when one margin
is standard normal and one is t-distributed. † Power when the grid is expanded.
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5 Visualizing departures from H0

If the null is rejected, the cause of the rejection can be investigated by visually comparing
the non-parametric estimate ρn,b(·) with the estimate under the null hypothesis ρθn(·). One
possibility is to plot ρn,b(·) and ρθn(·) seperately on a grid on R2. However, this requires
monte carlo estimation of ρθn since (3.9) is not valid on all of R2 and it can also be argued
that such plots are too detailed and, perhaps, difficult to interpret. We therefore believe
that such a direct comparison is best suited along curves as in figure 11-12 (a).

To obtain diagnostic plots on R2 we suggest to plot the results of ”local goodness-of-fit”
tests performed over a grid on R2, not limited to a curve. That is, for every point xj of a
pre-specified grid (x1, . . . , xp) we first test the null hypothesis that ρ(xj) = ρθ(xj), where
ρθ(xj) is the local Gaussian correlation at xj under the original H0. Our test statistic for
this purpose is simply ρn,b(xj), and the following bootstrap procedure is used to construct
critical values:

Local goodness-of-fit test

1. Estimate θ, F1 and F2 by θn = θn(U1, . . . , Un), F̂1 and F̂2.

2. Compute the value of ρn,b(xj) by the local likelihood method.

3. For some large integer R, repeat the following steps for every k ∈ {1, . . . , R}:

(a) Generate a random sample X∗1k, . . . , X∗nk from the distribution
F ∗(x) = Cθn(F̂1(x1), F̂2(x2)).

(b) Compute ρ∗,kn,b(xj) by repeating step 2 for this sample.

For a given significance level α, we reject the hypothesis that ρ(xj) = ρθ(xj) if ρn,b(xj) is
respectively smaller or larger than the (α/2)% or (1−α/2)% quantile of ρ∗,1n,b(xj), . . . , ρ

∗,R
n,b (xj).

To present the test results we adopt the idea of Jones and Koch [2003] used to con-
struct so-called ”dependence maps”: If ρn,b(xj) is significantly larger, xj is assigned the
colour magenta; if significantly smaller, the colour cyan; if the null hypothesis is not
rejected, the colour white.
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Figures 11 (a)-(b) illustrates how the diagnostic plots look when the null hypothesis that
C is the Clayton copula is true. The n = 500 real data comes from C(Φ(x1),Φ(x2)), where
C is the Clayton copula with parameter θ = 0.5. The Tn test does not reject Clayton as
the null copula (P-value=0.788). In figure 11 (a) we have plotted ρn,b(·) and ρθn(·) along the
curve x1 = x2 (since the true margins are both standard normal this curve corresponds to
the curve F1(x1) = F2(x2)). Using an estimated curve with x1 = F̂−1

1

(
F̂2(x2)

)
would give

very similar results. For this plot we have also added standard 95% bootstrap confidence
intervals. In 11 (b) we have plottet the results of the local goodness-of-fit test, where we
have used α = 0.05 and R = 1000 bootstrap samples.

Figures 12 (a)-(b) is based on the same data as above, but now the null hypothesis is that
C is the t-copula with 4 degrees of freedom. With a 5% significance level this hypothesis is
rejected by the Tn test (P-value=0.002). Figure 12 (a) clearly shows that ρn,b(·) is smaller
than ρθn in the upper tail. This is an indication that the estimated t-copula assigns to
much dependence in the upper tail compared to the data. This is indeed confirmed by the
local goodness-of-fit tests displayed in 12 (b). Also notice that 12 (b) reveals that ρ(xj) is
significally larger than ρθ in points of the 2nd and 4th quadrant. This is a result of the
t-copula having negative dependence in these regions when the copula parameter is close to
zero (See Berentsen and Tjøstheim [2012] for a detailed study of the t-distribution.)
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Figure 11: Evaluation of H0: Clayton when Clayton is the true copula: (a) Diagonal plot of
ρn,b and ρθn where ρθn is estimated under H0: Clayton; (b) Pointwise test, H0 : Clayton
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Figure 12: Evaluation of H0: t-copula when Clayton is the true copula: (a) Diagonal plot of
ρn,b and ρθn where ρθn is estimated under H0: t-copula; (b) Pointwise test, H0 : Clayton
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6 A real data study

The Danish fire insurance claims data has been shown much interest in actuarial science and
extreme value theory [see e.g. Mcneil, 1997]. The data consists of 2167 losses over one million
DKK from the years 1980 to 1990 inclusive. There were registered in total 604 cases where
a loss in both contents and profits occured, and the standardized log-transformed values of
these claims can be seen in figure 13 (a) along with the nonparametric estimate ρn,b(·) in
figure 13 (b). From the latter figure we see that the dependence increase towards the upper
tail. Indeed, in terms of AIC (Akaike Information Criteria), the best ranked copula amongst
Clayton, Frank, Gumbel, Gaussian and student-t was the Gumbel copula (-379.6), followed
by the Gaussian copula (-327.9). Nevertheless, the null hypothesis that the copula of the
data is the Gumbel copula was rejected by the goodness-of-fit test proposed in section 4.2
(P-value ≈ 0). However, by using the diagnostic plots proposed in section 5 we now have
the possibility to investigate the characteristics of the discrepancy between the data and the
null hypothesis. In figure 14 (a) the parametric estimate of the local gaussian correlation is
plotted together with the nonparametric estimate along the curve x2 = F̂−1

2 (F̂1(x1)) (which
is close to the diagonal curve). We see that the (fitted) Gumbel copula assigns too large
correlation in the lower tail compared to the data. This is also supported by figure 14 (b)
which displays the result of the local goodness-of-fit test. It is perhaps not so suprising that
the Gumbel copula is rejected since the data set is fairly complicated, and it is unlikely that
the dependence relationship should be adequately described by just one parameter as is the
case for the Gumbel copula. Screening some of the outliers did increase the p-value slightly,
but not enough to accept the null hypothesis.
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Figure 13: Standardized log-transformed values of loss on contents and loss on profits: (a)
Scatterplot; (b) Estimated local Gaussian correlation
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Figure 14: Diagnostic plots: (a) Parametric versus nonparametric local Gaussian correlation;
(b) Local goodness-of-fit test
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7 Concluding remarks

In this paper we have developed the theoretical relationship between the local Gaussian
correlation and the dependence structure in different bivariate copula models, i.e. the de-
pendence of a exchangeable copula can be expressed by an explicit formula for the ρ(x1, x2)
along the curve F1(x1) = F2(x2). Further, by plotting ρ(x1, x2) along such curves we are able
to shed some new light over the dependence structure of some of the most useful copulas.
In particular, because of the easy expression of the Archimedean copulas we can in many
cases easily calculate the population value of the local Gaussian correlation when marginal
distribution has been chosen. This gives us the possibility to visualize the dependence arising
from different copula models in the framework of the standard correlation coefficient, but
interpreted locally.

The local Gaussian correlation can be used for selecting the most appropriate copula in
a situation where bivariate data are given and one wishes to fit a copula model. As a first
exploratory step we suggest to look at two-dimensional plots of the (nonparametric) estimate
of ρ(x1, x2). This gives the user a crude description of the dependence structure in the data.

Given a copula candidate we have proposed a goodness-of-fit test, where we compare the
difference between the nonparametric and parametric estimate of local Gaussian correlation
estimated for the data in question. To construct the null distribution of the proposed test
statistic we have used two different parametric bootstrap procedure. One which computes
the parametric estimate of ρ(x1, x2) by the analytical formula derived in section 2 while
the other procedure does this estimation by monte carlo approximation. A Monte Carlo
simulation experiment confirms that the former bootstrap test performs very well in the
case of standard normal margins, also compared to a bona fide test based on the empirical
copula. However, these result are not general since other choices of margins has been seen to
influence both the power and the level of the test. For example, in the case of t-distributed
margins with v = 4 degrees of freedom, larger sample sizes was needed to obtain reasonable
levels and the grid points of the test statistic had to be changed in order to obtain comparable
power. Also, when the level of dependence in the data is very high the level of the one-level
bootstrap test does not meet the prescribed level. We believe this to be the result of bias
in the nonparametric estimate of ρ(x1, x2), since the same feature is not observed for the
double parametric bootstrap test.
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As a supplement to the goodness-of-fit test we propose two types of diagnostic plots
which gives the user an overview of the copula fit on a local level. Besides information about
the fit (or inadequacies) of the current model, these plot can in many cases also point the
user in the direction of a better model.

At this point a limitation to the proposed methods is that they require input about
bandwidths and choice of gridpoints. Though some guidelines for selecting such inputs has
been proposed in this paper there is a need to develope more efficient and automatic methods.
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Copulas are much used to model nonlinear and non-Gaussian dependence bet-
ween stochastic variables. Their functional form is determined by a few parame-
ters, but unlike a dependence measure like the correlation, these parameters 
do not have a clear interpretation in terms of the dependence structure they 
create. In this paper we examine the relationship between a newly developed 
local dependence measure, the local Gaussian Correlation, and standard copula 
theory. We are able to describe characteristics of the dependence structure in 
different copula models in terms of the local Gaussian correlation. In turn, these 
characteristics can be effectively visualized. More formally, the characteristic 
dependence structure can be used to construct a goodness-of-fit test for biva-
riate copula models by comparing the theoretical local Gaussian correlation for 
a specific copula and the estimated local Gaussian correlation. A Monte Carlo 
study reveals that the test performs very well compared to a commonly used 
alternative test. We also propose two types of diagnostic plots which can be 
used to investigate the cause of a rejected null. Finally, our methods are used 
on a ”classic”  insurance data set.
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