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Chapter 1

Introduction

�When Italy declared war on Austria in 1915, both sides feared an invasion
of their ports. Mines were set in many of the seaports in the Adriatic Sea,
preventing �shing for the duration of the war. When the war ended three
years later and the mines were removed, it was expected that the �sherman
would have a better than usual catch since the �sh stocks had had three years
to replenish. Surprisingly, the opposite was true.� The story is taken from
Illner [18].

Traditionally, �shery research has been studying each specie in isolation, al-
though ecological system have been studied for many years through mathem-
atical models, e.g. Volterra(1928) and Lotka (1925, he gave an explanation of
the phenomenon described above in a study of predator-prey systems). Of-
ten the models have plenty of allowance for exogenous in�uence. However,
awareness is growing that some of those in�uences might be interactions with
other species.

The income from the export of Norway's �sh resources is very important.
Both from an environmental and economic point of view, the government has
an enormous responsibility to make the right harvesting decisions. The main
intention with marine management is to ensure conservation of the �shery
resource into the future. We will give an introduction on management of
renewable resources where we include interactions between two species.

1.1 Marine Predators

Predation is de�ned as: Consumption of an organism(prey) by another or-
ganism(predator) and prey is still alive when attacked by predator.

People are natural predators of �sh, much as �sh of di�erent species prey
on themselves and on �sh of other species. People are on the top of an

1



1.1. MARINE PREDATORS 2

amazingly complex web of predator-prey chain. If we want to maximize the
stock of cod, it would be advantageous to consider the predators of cod (i.e.
seal). It could pay o� to heavily deplete sea mammals to increase the surplus
production of �sh resources for man, Flaaten [10].

Pomarenko [25] studied the predation e�ects on capelin in the Barents sea
from cod and haddock. They found that the annual consumption amounted
to between 6.6 and 9.8 million m.t. in the years 1974-1976. In comparison,
in the same period, the annual catches were 1.4 million m.t., or only 15-20
present of the consumption by cod and haddock. Sergeant [30] studied inter-
actions between seals and �sh stocks in the Atlantic ocean and found that
Harp seal in the Northwest Atlantic daily consumes 5 present of its body
weight. Flaaten and Stollery [12], stated that the estimated average cost per
North Eastern Atlantic Minke whale in 1991-1992 was between $US 1780
and $US 2370.

For a single �sh stock the biological theory says that MSY(maximum sus-
tainable yield) harvesting is an optimal choice (see �gure 1.1). In equilibrium
we harvest the growth, and this level yields the largest harvest. However,
they do not consider the economic bene�t and costs of �sheries. From an
economic point of view, harvesting below, at or above the MSY can all be
optimal. For a more detailed discussion, please turn to Clark [5].

Figure 1.1: Left �gure: MSY harvesting tells us that the harvest should
equal it's maximum growth. Right �gure: The maximum sustainable yield
frontier (MSF) gives the maximum possible yield of one species for a given
yield of the other.

When harvested species have strong interactions we cannot have optimal ex-
ploitation to each species individually as a guiding principle, as harvesting
of one level in the chain in�uences the next level. The theory is that the
yield for predator is maximized when yield of prey is zero, that is without
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harvesting prey. The maximized yield of prey is obtained when the pred-
ator stock is depleted. The existence of predator will for instance shift the
stock of the prey to a level below the optimal, which will obviously not be
sustainable. Moving from single-species to two-species models the biological
constraint changes to, for example, the MSF (�gure 1.1).

The MSF curve gives the absolute sustainable yield of either population for
a speci�ed yield of the other. Suppose the yield for the predator is given
and our main goal is to maximize the yield of the prey. Then it is obviously
better to overe xploit than to under exploit the predator. Otherwise the
predator will consume more of the prey, and thereby removing a potential
yield prey. For similar reasons, it is more e�cient to under exploit the prey
to leave more food for the predator.

Every combination of the two species resulting at a point on or under this
curve will be sustainable from a biologic point of view. The optimal choice
depends also on prices, costs, etc. If we maximize the yield for each species
independent of the other, the total yield would result in the point S. Clearly
this is not sustainable. Yields to the north-east of the curve are possible for
some period of time, but they are not sustainable. Which combination of
yield that should be chosen depends on the management objective and the
price of �sh. Let species 2 be the predator and species 1 be the prey. If
the predator is valuable and the prey is a low net valued species, in economic
terms, it could be optimal to have a large yield of the predator and less yield
of the prey, in vincity of B in the �gure. In case of the opposite, predator of
low net value and prey of high net value the optimal combined harvest could
be a point close to A.

MSF(maximum sustainable yield frontier) harvesting thus implies that neither
shall the predator be underexploited, nor shall the prey be overexploited. A
condition for MSF is that the two species can be harvested selectively.

In this chapter we introduce and discuss our model. Next chapter contains
a summary of Optimal Control Theory, the theory we employ on our model.
Chapter 3 gives the results from applying the optimal control theory on our
problem, after which we implement our method on one example. Chapter
4 provides a summary and discusses the results from our example. The
appendix shows some derivations and the program listing.

1.2 The Model

We use an aggregated deterministic model, formulated in a continuous time
setting. Our model considers two populations of �sh, one of which is the
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predator of the other. The growth of prey and predator depends on the
growth of the predator and prey stock, respectively. We consider �sh stocks
in a restricted area.

For the prey we use this growth function with depensation.

f1(x) = r1x
2
(
1− x

K1

)
(1.1)

We adopt the logistic growth function for predator.

g1(y) = r2y
(
1− y

K2

)
(1.2)

x and y are the total stocks, r is the rate of natural increase and K is the
carrying capacity1 of the stock. We assume that the carrying capacities for
our system are given constants. This function describes the growth of a stock
without predation or human interaction. The growth function in the case of
predation will be:

For the prey : F (x, y) = r1x
2
(
1− x

K1

)
− axy (1.3)

For the predator : G(x, y) = r2y
(
1− y

K2

)
+ bxy (1.4)

a and b are the coe�cients with respect to the other species. The predator
coe�cient, a, tells which share of the prey stock one unit of the predator
is consuming per unit of time. Then axy is the total rate of consumption.
Similarly, the existence of prey causes an increase in the predator stock. The
negative term −x

K1
prevents the prey stock, x, from growing without bounds.

Similarly for the predator. Note that in presence of predator, the growth of
prey has critical depensation (it can have negative growth). Our equations
embody the essential elements of an interactive predator-prey system.

When including �shing this results in the equations2

For the prey : ẋ = r1x
2
(
1− x

K1

)
− axy − h1 (1.5)

For the predator : ẏ = r2y
(
1− y

K2

)
+ bxy − h2 (1.6)

h1 and h2 denote the catch of prey and predator, respectively. We assume
that the species can be harvested independently of each other, that is, the
�shing e�ort targeted at one species catches just that one. The right hand
side of these equations do not depend explicitly on time. Systems of this

1Carrying capacity depends usually on availability of food, spawning and nursery areas
2Dot notation is used for the time derivative: ẋ = dx

dt
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property are called autonomous.

Next we assume that price is a function which decreases with quantity,
P = p − Bh, where p is the maximum market price. The cost of �sh-
ing is proportional with the e�ort E. The net income: Income-Costs =
Ph − cE = ph − Bh2 − cE. We have an economic production function
h = qEx ⇒ E = h

qx . The costs are then cE = c
q ·

h
x = Ch

x . Then, for both
functions the utility or pro�t can be described by

Π̂(xi, hi) =
(
pi −

Ci

xi

)
hi −Bih

2
i (1.7)

p,C,B are economic constants. This function is also referred to as the ob-
jective function. The total pro�t will be the sum of the utility functions for
the predator and the prey.

It would be helpful to rewrite the population variables x,y in an appropriate
dimensionless form, in order to highlight the combinations of parameters
that are the key to the behavior of the system. De�ning:

X =
x

K1
, Y =

y

K2

τ = r2t γ =
δ

r2
s =

r1K1

r2
α =

aK2

r2
, β =

bK1

r2
,

U =
h1

K1r2
, V =

h2

K2r2
, b1 =

B1r2K1

p1
, b2 =

B2r2K2

p2
, c1 =

C1

K1p1
, c2 =

C2

K2p2

We can now rewrite the growth equations as

dX

dτ
= sX2(1−X)− αXY − U,

dY

dτ
= Y (1− Y ) + βXY − V

After the scaling, we get the pro�t functions:

Π1(X, U) = U(1− c1

X
− b1U) Π2(Y, V ) = V (1− c2

Y
− b2V )

These pro�t functions are scaled separately. In order to combine them we
need a parameter to de�ne them in the same measure. We multiply Π1 by σ.

σ =
K1p1

K2p2

The total pro�t for the system will be a sum of the pro�t functions for
each population. The value from harvesting can be found by integrating the
utility function over the time period. We use in�nity as the upper limit due
to our focus on a sustainable development:
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∞∫
0

e−γτ

(
σΠ1(X, U) + Π2(Y, V )

)
dτ (1.8)

The objective is to maximize discounted social net bene�ts over an in�nite
horizon, subject to resource growth constraints. Our aim is to maximize
the utility, so our problem can be stated as:

max
U,V

∞∫
0

e−γτ

[
σU
(
1− c1

X
− b1U

)
+ V

(
1− c2

Y
− b2V

)]
dτ (1.9)

Under the conditions

Ẋ = sX2(1−X)− αXY − U = f(X, Y, U)

Ẏ = Y (1− Y ) + βXY − V = g(X,Y, V ) (1.10)

X, Y, U, V ≥ 0

The problem is well de�ned when we add proper initial conditions.
Maximizing the present value of discounted future resource rent is the
main economic management objective, when harvested �sh is the only
bene�t to society.

We note that this is an optimal control problem with two state vari-
ables and two controls. In the next chapter we will introduce a method
that can be used to solve this problem.

Figure 1.2 demonstrates the growth equations without harvesting(U=V=0).
From the right �gure we see that the growth of predator which is de-
scribed by a logistic growth function increases at a high rate when the
stock is at a low level. The growth curve with depensation on the left
increases slowly when the stock is small.

1.3 Remarks

Note that if the predator stock becomes very large, this will result in a
large reduction in the growth function for the prey stock. We may ob-
tain that there will not be positive growth of prey at all (see �gure 1.2).

The scaled �sh stocks, X and Y, are expressed as densities.

We used the logistic growth function to describe the growth of the
predator. This means that the population grows at a high rate for a
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Figure 1.2: Demonstration of the growth functions. Left: The growth func-
tion for prey decline as the stock of predator increases. For a large stock of
predator, the growth of prey can be negative. Right: Growth for predator
increases as stock of prey is increasing.

population close to zero. We �nd that unrealistic. When the popula-
tion is small it might have trouble replenish because it is unprotected,
and process of spawning is slow. For a more detailed discussion, see
Clark [5].

The scaled discount rate, γ = δ
r2
, is the ratio between the intristic

growth rate and the actual discount rate. When r2 is not the intristic
growth rate of an marine mammal, r2 will usually dominate the dis-
count rate δ. Optimal paths are therefore not very sensitive to changes
in the discount rate.

Now we will give a presentation of the di�erent equilibrium solution
our model can have in a case without harvesting. The stability of a
renewable resource exploitation problem may be of importance in policy
making. A system with unstability may lead to destruction of the
resource and must be managed more carefully than a stable one. We
have the equations;

Ẋ = sX2(1−X)− αXY Ẏ = Y (1− Y ) + βXY

We seek an equilibrium X > 0, Y > 0
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αY = s(X −X2) and Y = 1 + βX (1.11)

or

0 = sX2 − (s− αβ)X + α (1.12)

⇔ 2sX = s− αβ ±
√

[(s− αβ)2 − 4αs] (1.13)

We have an equilibrium if (s − αβ)2 ≥ 4αs. In addition we need
s− αβ ≥ 0 for a solution X ≥ 0

Now we need to study the Jacobian matrix of this system. Note that
we have simpli�ed it by using (1.11).

J =

(
2αY − sX −αX

βY −Y

)

trJ = λ1 + λ2 = (2α− 1)Y − sX (1.14)

det(J) = λ1 · λ2 = −2αY 2 + sXY + αβXY (1.15)

= Y [(s + αβ)X − 2αy] (1.16)

= Y [(s− αβ)X − 2α] (1.17)

= Y [sX2 − α] (1.18)

Let λ1, λ2 represent the eigenvalues of J. The value of these eigenval-
ues will give the character of the equilibrium point. The combinations
of eigenvalues and their respective stability is given in table 1.3. If it
exists a stable equilibrium point, it will be our solution. Note that this
analysis is local, we study the stability of the equilibrium points.

Now we present the di�erent cases of equilibrium. In a unstable node
the trajectories go to in�nity as t → +∞ and toward the equilibrium
point as t → −∞, thus the trajectories move away from the equilibrium
point. When the direction along the trajectories are reversed we call the
equilibrium a stable node. A saddle point is an unstable equilibrium,
but unlike an unstable node, two stable trajectories do converge to the
equilibrium point. Except for the semiaxes, all trajectories �begin� at
t = −∞ and �end� at t = +∞. A center is the case when ellipses are
centered at the equilibrium point, it is neutrally stable. We could have
a stable focus, spirals converging toward the equilibrium point.

From (1.13) we have

0 < 2sX ≶ s− αβ > 0 or 4s2X2 ≶ (s− αβ)2 ≥ 4αs (1.19)
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Values of λ1, λ2 Character of Equilibrium Point
λ1, λ2 > 0 Unstable node
λ1, λ2 < 0 Stable node
λ1 < 0 < λ2 Saddle point
λ2 < 0 < λ1 Saddle point

λ1, λ2 complex, Reλi > 0 Unstable focus
λ1, λ2 complex, Reλi < 0 Stable focus
λ1, λ2 complex, Reλi = 0 Center

Table 1.1: The eigenvalues give the stability of the equilibrium point.

The largest root gives: 4s2X2 ≥ 4αs or sX2 ≥ α ⇒ det(J) ≥ 0.
From (1.12) we have that the product of the roots are X1 ·X2 = α

s
or

X2
1X

2
2 = α2

s2 . Let X2 be the largest root. We then know that sX2
2 > α

when we have two di�erent roots. This gives us: sX2
1 · sX2

2 = α2 >
sX2

1 · α ⇒ sX2
1 < α ⇒ det(J) < 0 for X1. To summarize, we have two

equilibriums. For the largest we have λ1 · λ2 > 0 and for the smallest
we have λ1 · λ2 < 0.

We �rst analyze the smallest root, where det(J) < 0 for this root:

0 = λ2 + trJλ + det(J) (1.20)

λ = −trJ

2
±
√

(trJ)2

4
− det(J) (1.21)

= −trJ

2
±
√

(trJ)2

4
+ |det(J)| (1.22)

This gives the two eigenvalues λ1 > 0, λ2 < 0 ⇒ a saddle point, which
is unstable.

Next we analyze the largest root, where λ1 · λ2 > 0

λ = −trJ

2
±
√

(trJ)2

4
− det(J)

From trJ we see that if α < 1
2
both eigenvalues are positive. This

would yield an unstable node. If α > 1
2
this equilibrium point can be

a stable node or focus. Summarizing, for some set of parameter values
our model describes a stable system of predator-prey and we can try
to harvest the resource using reasonable management.

The main intention for this thesis is to study a predator prey relation-
ship close to cod and capelin. Our growth functions are chosen to �t
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this relation. The cod function is well described by the logistic growth
function, but the capelin stock is best described by growth function
with depensation. Other stocks might be better described by di�erent
growth functions.



Chapter 2

Optimal Control Theory

In this chapter we will give an introduction to the theory of determin-
istic optimal control problems. Control theory is the study of how to
adjust the parameters in the equations controlling a system in order to
maximize its performance.

First we will give a presentation of the notation in optimal control
problems. Then we will introduce the necessary conditions an optimal
control must satisfy, given by Pontryagins Maximum Principle. We
introduce feedback controls and give a short introduction to dynamic
programming and the Hamilton-Jacobi-Bellmann equation both in con-
tinuous and discrete time. In the end of this chapter we will provide eco-
nomic interpretations of the most important equations. This chapter
is mainly inspired by Seierstad and Sydsæter [29] and Kamien and
Schwartz [20].

2.1 Introduction

In optimal control problems we have two classes of variables. x =
(x1, . . . , xn) de�nes the state of the system. The state could typically
be a stock of capital. We now assume that the process in the economy
(and hence the xi(t) variables) can be controlled to some extent, we
have a control that in�uences the process. We de�ne the control as
u = (u1, . . . , ur). The control variables or decision variables could typ-
ically be di�erent rates, quotas, etc. In our model the state describes
the size of the stock and the control describes the harvest of the �sh
resource.

Now we need the laws governing the behavior through time, that is the
dynamics of the system.

11
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dx(t)

dt
= ẋ = f(x(t),u(t), t)

This equation is known as the state equation. The functions f =
f1, . . . , fn are given functions, typically growth functions. We assume
that the rate of change of each state variable in general depends on all
the state variables, all the control variables and on time explicitly. We
need a starting point t0 for the problem, but the end point t1 is not
necessarily �xed. In our model we have an in�nite horizon.

The state of the system is known at time t0, x(t0) = x0. In some
problems the �nal state x(t1) might be subject to certain bounds or
conditions. We choose a certain admissible control function and sub-
stitute it into the state equation. This choice will result in a unique
solution x(t) = (x1(t), . . . , xn(t)), referred to as the response.

We de�ne an objective functional

W =

t1∫
t0

Π(x(t),u(t), t)dt

Π(x(t),u(t), t) is a given, continuously di�erentiable function often re-
ferred to as the utility function. We start with the initial amount of
capital, x0. We follow the policy u and the total result will be W.

The fundamental problem is now to determine a feasible control func-
tion u(t) to maximize the objective functional. A feasible control must
satisfy the bounds on the control and the initial and terminal condi-
tions for the corresponding response. This control, if it exists, is an
optimal control and the associated path x(t) is an optimal path.

We now summarize the problem:

max
u

t1∫
t0

Π(x(t),u(t), t)dt x(t0) = x0 ẋ = f(x(t),u(t), t) (2.1)

Usually we have bounds on both the state and the control, i.e. they
cannot vary freely. We need an admissible control. The class U of
admissible controls is by de�nition the class of all piecewise-continuous
real functions u(t) ∈ U , where U is a given interval called the control
set. These admissible controls will lead to meaningful states.
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The maximizing u, the optimal control, is often denoted by u∗. The
corresponding optimal path is similarly denoted as x∗. Below we will
now see the necessary conditions that must be satis�ed by an optimal
control.

2.2 The Pontryagin Maximum Principle

L.S. Pontryagin1 has a famous maximum principle that gives us the
techniques of optimal control theory. We state the Pontryagin Max-
imum Principle for �xed time intervals. This maximum principle is
a collection of necessary conditions for a control function to solve the
problem and thus to be an optimal control. In short the principle says
that if there exists a solution to our problem, then it must satisfy some
conditions. In appendix A we have derived the necessary conditions
for the simplest problem in optimal control theory.

Our problem is to �nd a piecewise continuous control function u(t) =
(u1(t), · · · , uk(t)) and an associated continuous and piecewise di�eren-
tiable state vector x(t) = (x1(t), · · · , xn(t)) de�ned on the �xed time
interval [t0, t1], that will

max
u

t1∫
t0

Π(x(t),u(t), t)dt (2.2)

subject to the di�erential equations

dxi(t)

dt
= fi(x(t),u(t), t), i = 1, . . . , n (2.3)

initial conditions
xi(t0) = x0

i i = 1, . . . , n (2.4)

terminal conditions

xi(t1) = x1
i for i = 1, . . . , p(x1

i �xed)
xi(t1) ≥ x1

i for i = p + 1, . . . , q(x1
i �xed)

xi(t1) free for i = q + 1, . . . , n

 (2.5)

and control variable restriction
1Lev Semonevich Pontryagin(1908-1988) graduated from the University of Moscow in

1929 despite that an explosion left him blind at the age of 14. He received many honors
for his work. He was elected to the Academy of Sciences in 1939 and in 1970 elected
Vice-president of the International Mathematical Union.
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u(t) = (u1(t), . . . , uk(t)) ∈ U ⊆ Rk (2.6)

We introduce the Hamiltonian

H(x(t),u(t), λ(t), t) = λ0 · Π(x(t),u(t), t) + λ(t) · f(x(t),u(t), t)

where λ0 is a constant and λ(t) = (λ1(t), · · · , λn(t)) are Lagrange mul-
tipliers, also known as costates or shadowprices.

The maximum principle transfers the problem of �nding a u(t) that
maximizes (2.2) subject to given constraints, to the problem of max-
imizing the Hamiltonian function w.r.t. u ∈ U. In addition it tells us
how to determine the λ−function.

The Pontryagin Maximum Principle : Let u∗(t) be a piecewise con-
tinuous control de�ned on [t0, t1] which solves (2.2-2.6) and let x∗(t)
be the associated optimal path. Then there exists a constant λ0 and a
continuous function λ(t) = (λ1(t), . . . , λn(t)) where for all t0 ≤ t ≤ t1
we have

(λ0, λ(t)) 6= (0,0)

u∗(t) maximizes H(x∗(t),u(t), λ(t), t) for u ∈ U, that is:

H(x∗(t),u∗(t), λ(t), t) ≥ H(x∗(t),u(t), λ(t), t) ∀u(t) ∈ U (2.7)

Except at the points of discontinuities of u∗(t), for i = 1, . . . , n

λ̇i(t) = −∂H∗

∂xi

= −∂H

∂xi

(x∗(t),u∗(t), λ(t), t) (2.8)

Furthermore
λ0 = 0 or λ0 = 1 (2.9)

and �nally, the following transversality conditions are satis�ed.

λi(t1) no conditions for i = 1, . . . , p
λi(t1) ≥ 0(= 0 if x∗i (t1) > x1

i ) for i = p + 1, . . . , q
λi(t1) = 0 for i = q + 1, . . . , n

 (2.10)

For the proof of this theorem, please turn to Pontryagin et al. [24],
Hestenes [15] or Lee and Markus [22]. Clark [5] gives an intuitive proof.

In the economic literature it is quite common to assume λ0 = 1. How-
ever, it is possible that the Maximum Principle is satis�ed with λ0 = 0.
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In Seierstad and Sydsæter [29] they refer to problems which have λ0 = 0
as abnormal, as this makes it possible to replace the function Π by any
other function without changing any of the conditions in the Maximum
Principle. We will always assume that λ0 = 1.

In terms of the Hamiltonian, our problem can now be stated as:

Hλ = ẋ

−Hx = λ̇
argmaxu∈UH = u

 (2.11)

These are the �rst order conditions for an optimal solution. Note that
in the last condition we need to maximize H with respect to u, whereas
x and t are �xed. If the optimal control u(t) is an inner solution (i.e,
lie within the control interval U), then we can write: Hu = 0. We
have three unknown functions to determine: x(t),u(t), λ(t). We use
the three equations above to solve them.

Current value formulation:
Very often values are discounted back to time t = 0 by multiplying
the pro�t function by e−δt. Often it may be convenient to express the
values in the current time, that is, the value at t rather than the value
at the initial time.

With the discount term, the Hamiltonian will have the form:

H(x(t),u(t), λ(t), t) = e−δtΠ(x(t),u(t), t) + λ(t) · f(x(t),u(t), t)

The current value Hamiltonian is the Hamiltonian multiplied with eδt.
This leads to the introduction of a current value multiplier function,
m(t) = eδtλ(t). The new current value multiplier m(t) gives the mar-
ginal value of the state variable at time t in terms of values at t.

Then the current value Hamiltonian will be formulated as

H (x(t),u(t),m(t), t) = eδt ·H(x(t),u(t), λ, t)
= Π(x(t),u(t), t) + m(t) · f(x(t),u(t), t)

The conditions for this current value problem are: 2

Hm = ẋ
δm−Hx = ṁ

argmaxu∈UH = u

 (2.12)

2Subscripts denote partial derivatives; Hx = ∂H
∂x
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If t is not an explicit argument of f or Π, the di�erential equation
describing an optimal solution will be autonomous. In the problem we
study in this assignment, we use the current value formulation.

2.3 Feedback rules

Usually in optimal control theory the control depends on time, costates
and the states. We can use the maximum principle (Hu = 0) to elim-
inate the costate variable. When the optimal control u(t) is expressed
directly as a function of time and the state variables, we have a feed-
back rule. For autonomous problems the control will only depend on
the state variables.

A feedback rule has the quality that when the state is changing, the
change in the control variable immediately follows. As Clark [5] de-
scribes them: �Such control laws are simple to describe and to imple-
ment, and they are capable of responding to random �uctuations in the
state variable and in the parameters of the problem.�

Models that are linear in the control gives rise to bang-bang policies.
For one-dimensional problems, we de�ne the switching function s(t) =
Hu

3. The most rapid approach will be to choose the control u that
drives the population level x = x(t) toward x∗ as rapidly as possible.
When umax denotes the maximum feasible harvest rate, we have

u =

 umax whenever s(t) ≥ 0
u∗ whenever s(t) = 0
0 whenever s(t) ≤ 0

When s(t) = 0 we have the optimal policy u = u∗. When s(t) = 0
cannot be sustained over an interval, we will have a bang-bang policy.
Models resulting in bang-bang policy assume constant costs and prices
and gives on/o� policies. Bang-bang means that it is optimal to ap-
proach the steady state as quickly as possible. This is a special case of
most rapid approach paths (MRAP) to reach the optimal solution.

In our model such a bang-bang solution is not realistic. Following a
bang-bang policy we �sh at a maximum when the �sh stock is above
it's optimal level. Over time the stock will be reduced to a level be-
low the optimal. Now a prohibition against �shing is introduced. We
will then wait for the stock to reach its optimal level before we again

3Subscripts denote partial derivatives; Hu = ∂H
∂u
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Figure 2.1: A bang-bang policy with the parameters taken from table 3.2 in
chapter 3.3. This policy has been computed by ignoring the non-linear term
in the Hamiltonian, i.e. b2=0. The results demonstrate the discontinuous
bang-bang policy.

can start �shing. Such a bang-bang policy is very inconvenient for the
�shery. Closing down a �shery completely seems to be an extreme ac-
tion, particularly if the closure is expected to last for a longer period
of time. However, a closure of the �shery would probably be accep-
ted for a low stock level in order to let the stock replenish. But this
bang-bang policy introduces a moratorium for all stock level below it's
optimal (including relatively large levels close to it's optimal). As San-
dal and Steinshamn [26] puts it: �Although MRAP's have been shown
to perform well for special cases (Clark[1976]), such paths are highly
unmanageable and unrealistic in practice and are usually a result of
oversimpli�cation of the problem�. However, linear models are very
useful as advice on determining quotas (in relatively rare cases) when
the stock is close to its optimal size .

When the Hamiltonian is nonlinear in the control we will have a non-
trivial feedback control, characterized by an asymptotic approach to
the equilibrium. We demonstrate nontrivial feedback controls in our
example in the next chapter.
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2.4 Dynamic programming

Dynamic programming can be applied on both continuous and discrete
time problems and was developed by Richard Bellmann4. First we will
arrive at the Hamilton-Jacobi-Bellmann-equation in continuous time
setting, later we present it in discrete time setting. The HJB-equation
is the fundamental partial di�erential equation for all problems in dy-
namic programming.

Dynamic programming is based on the principle of optimality:
If we have an optimal path, then the problem has to be optimal from
every point on this path. That is; if we stop at some point on this curve,
then the control over the remaining period must be optimal for the re-
maining problem. The initial conditions for this remaining problem is
the state resulting from the early decisions.

2.4.1 Hamilton-Jacobi-Bellmann equation

We will now use this principle of optimality to arrive at the Hamilton-
Jacobi-Bellmann equation.

We de�ne V (x0, t0) as the best value that can be obtained from the
starting time t0 in the state x0.

V (x0, t0) = maxu

T∫
t0

Π
(
x(t),u(t), t

)
dt + ϕ(x(T ), T )

ẋ = f(x(t),u(t), t) ,x(t0) = x0

 (2.13)

This function is de�ned for all 0 ≤ t0 ≤ T and for any possible x that
may arise. It follows that

V (x(T ), T ) = ϕ(x(T ), T )

Breaking up the integral

V (x0, t0) = max
u

( t0+∆t∫
t0

Πdt +

T∫
t0+∆t

Πdt + ϕ

)
(2.14)

where ∆t is very small and positive. From the optimality principle
we can argue that the control u should be optimal for the problem
beginning at t0 + ∆t in state x(t0 + ∆t) = x0 + ∆x. Hence,

4Richard Bellmann(1920-1984) was an mathematician focusing on applied mathem-
atics. He invented dynamic programming in 1953 and he is also known for important
contributions in other �elds of mathematics. In 1946 he received his PhD. at Princeton
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V (x0, t0) = max
u,t0≤t≤t0+∆t

( t0+∆t∫
t0

Πdt + V (x0 + ∆x, t0 + ∆t)

)
(2.15)

subject to ẋ = f, x(t0 + ∆t) = x0 + ∆x

We now approximate the integral in (2.15) by Π(x0,u, t0) ·∆t. Since
∆t is very small we consider the control to be constant on the interval
(t0, t0+∆t). Further we assume V is su�ciently smooth and we expand
the second term on the right by Taylor's theorem. We only consider
terms of �rst order. By subtracting V (x0, t0) from each side, then
dividing through by ∆t and letting ∆t → 0 we get5

max
u

(
Π(x,u, t) + Vt(x, t) + Vx(x, t) · ẋ

)
= 0 (2.16)

We then use the condition ẋ = f(x,u, t) and get

max
u

(
Π(x,u, t) + Vx(x, t) · f(x,u, t)

)
+ Vt(x, t) = 0 (2.17)

That is
−Vt = max

u

(
Π + Vx · f

)
(2.18)

This equation is known as theHamilton− Jacobi−Bellmann equa-
tion for the continuous time setting.

It can be shown that this equation is consistent with the necessary
conditions for an optimal solution. The �rst term on the right hand
side is today's pro�t. Vx is the change in the value of the resource as
the state changes, f is the growth function. Thus the equation says
that the changes in the value through time must equal the maximized
todays pro�t(Π) and change in the value according to a change in the
state.

The Hamilton-Jacobi-Bellmann equation is a modi�ed version of the
Hamilton-Jacobi equation, known from classical physics.

From this equation we see that the optimal control is given by the
state. This is the feedback solution: We consider a given time, observe
the state and we seek the optimal policy based on these observations.
This implies that the policy is a function of the state and the time,
u = u(x, t).

5Subscript denote partial derivatives: Vt = ∂V
∂t

, Vx = ∂V
∂x
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2.4.2 Discretization

Our model is formulated in continuous time, but is solved in discrete
time setting. The continuous time model involves the assumption that
the response of the population to external forces is instantaneous. Thus
delay e�ects is not included in these models. We therefore introduce
discrete-time models.

In this section we present a summary of the discretization technique
given in the note by Grûne and Semmler [13]. We will not apply an
adaptive grid since we obtain satisfactory solutions without it. The
discretization procedure goes back to Capuzzo Dolcetta [2] and Fal-
cone [8]. Further information can be found from Capuzzo Dolcetta
and Falcone [3] or Bardi and Capuzzo Dolcetta [1]. The basic dis-
cretization technique is done in two steps. First we shift the time,
then space. Note that the problem is almost autonomous, time is only
present in the discount term. We have the following problem:

V (x) = max
u∈U

∞∫
0

e−δtΠ(x(t),u(t), t)dt (2.19)

subject to ∂
∂t

x(t) = f(t,x(t),u(t)), x(0) = x0 ∈ Rn .

Step 1 :6

Vh(x) = max
u∈U

Jh(x,u) Jh(x,u) = h
∞∑
i=0

βiΠ(xh(i), ui), (2.20)

where β = 1− δh and xh is de�ned by

xh(0) = x, xh(i + 1) = ϕh(xh(i),ui) := xh(i) + hf(xh(i),ui)
h>0 is the discretization time step.

The optimal value function Vh is the unique solution of the discrete
Hamilton-Jacobi-Bellman equation

Vh(x) = max
u∈U

{
hΠ(x,u) + βVh(ϕ(x,u))

}
(2.21)

We de�ne the dynamic programming operator Th by

Th(Vh)(x) = max
u∈U

{
hΠ(x,u) + βVh(ϕ(x,u))

}
(2.22)

6In this case Vh does not denote partial derivatives.
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then we can express Vh as the unique solution of the �xed point equation

Vh(x) = Th(Vh)(x) for all x ∈ R (2.23)

Step 2: we now approximate the solution on a grid Γ covering a compact
subset Ω of the state space. We assume that for any point x ∈ Ω there
exists at least one control value u such that x + hf(x, u) ∈ Ω is valid.
We search an approximation V Γ

h (xi) satisfying

V Γ
h (xi) = Th(V

Γ
h )(xi) ∀xi ∈ Γ (2.24)

When the points of evaluation, x, are not grid points, we determine
them by interpolation. Note that we can obtain a feedback rule based
on this approximation. (The control is given as a function of the state).
We choose the value, u∗ which maximize, equation (2.21). It is shown
that this procedure will converge to the correct solution. For a rigorous
convergence analysis of this discretization scheme, please turn to Bardi
and Capuzzo Dolcetta [1] and Falcone and Giorgi [7].

2.5 Economic Interpretation

In this section we will give some economic interpretations of the mul-
tiplier function, the Hamiltonian and the necessary conditions for op-
timal solutions.

λ: In Kamien and Schwartz [20] it is shown that along the optimal
path, λ(t) is the marginal value of the capital stock, x, at time t. That
is, if the stock is reduced one unit, its value at time t will be reduced by
λ(t). λ(t) is also referred to as the �shadow price�, it is not the direct
sale price, but loss of value for future productivity.

The Hamiltonian:

H(x(t),u(t), λ(t), t) = Π(x(t),u(t), t) + λ(t) · f(x(t),u(t), t)

is the rate of increase of total assets. Π is the cash �ow in the value
function. f expresses the investment in capital, λ(t)·f express the value
of investment.

We have the �rst order condition: Hu = 0 for inner solutions. This
maximum principle assures that the optimal control maximizes the
rate of increase of total assets.

∂Π

∂u
+ λ

∂f

∂u
= 0
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Clearly, from the state equation, the choice of u determines x. A de-
cision taken at any time has two e�ects. It in�uences the pro�t earned
at that time, and the change in the capital stock. Dorfman [6]interprets
this condition as: �It says that along the optimal path of the decision
variable at any time the marginal short-run e�ect of a change in the de-
cision must just counter-balance the e�ect of that decision on the total
value of the capital stock an instant later.� Further, he states that the
control should at every moment be chosen �[]... so that the marginal
immediate gain just equals the marginal long-run cost...�

The second condition is: λ̇ = −Hx :

−λ̇(t) =
∂Π

∂x
+ λ

∂f

∂x

−λ̇(t) : Expresses the rate of depreciation of the capital(Dorfman [6]).
The rate of depreciation along an optimal path should be equal to the
marginal net increase of the value of the capital.

Now it is easier to understand that if T is free, then we must have
λ(T ) = 0. We exploit the resources as long as the marginal value is
positive and terminate the project when it becomes zero. If the adjoint
variable had a positive value in the terminal time, this implies that
pro�t would be increased by further exploiting the stock. This is also
the case with an in�nite time horizon, the discount factor ensures that
the present value of stock declines asymptotically to zero, i.e. λ(T ) → 0
as T→∞.

The use of a discount rate in the calculations of the optimal harvest
have been criticized for lack of importance of future value. We discount
all values back to time zero, which implies that we value the present
generation's utility of the resource higher than a later generation's util-
ity.



Chapter 3

Results

In this chapter we will use the theory from chapter two on our problem.
First we apply the Pontryagin Maximum Principle on our problem
with two control variables and two state variables. In chapter two we
stated the principle for a �xed time interval, the case with an in�nite
horizon follows from it, please turn to Seierstad and Sydsæter [29]. We
then analyze the equilibrium and obtain analytical results. Thereafter
we employ our model on an example and obtain feedback solution by
the Hamilton-Jacobi-Bellmann equation. We now turn to lowercase
letters for the scaled variables. If nothing else is stated, it is the scaled
variables that are displayed.

3.1 The Problem in equilibrium

The problem was de�ned as

max
u,v

∞∫
0

e−δtΠ(x, y, u, v)dt (3.1)

Π(x, y, u, v) = σ
((

1− c1

x

)
u− b1u

2
)

+
(
1− c2

y

)
v − b2v

2

Subject to:

ẋ = sx2(1− x)− αxy − u (3.2)

ẏ = y(1− y) + βxy − v (3.3)

x, y, u, v ≥ 0, x(0) = x0, y(0) = y0 (3.4)

23
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We �rst formulate the current value Hamiltonian:

H = Π(x, y, u, v) + m[sx2(1− x)− αxy − u] + n[y(1− y) + βxy − v]

The �rst-order conditions for optimum yields the following equations:

ẋ = sx2(1− x)− αxy − u (3.5)

ẏ = y(1− y) + βxy − v (3.6)

ṁ = γm− [σ
c1

x2
u + m(2sx− 3sx2 − αy) + βyn] (3.7)

ṅ = γn− [
c2

y2
v − xmα + n(1− 2y + βx)] (3.8)

u = argmaxH (3.9)

v = argmaxH (3.10)

We seek a steady-state equilibrium solution of the equations above, thus
we put them equal to zero. Note that if the optimal control u(t) lies in
the interior of the control interval, (3.9) implies that ∂H

∂u
= 0. u = v = 0

has already been discussed(section 1.3). We seek an equilibrium where
u > 0, v > 0. Thus, the remaining alternatives are u > 0, v = 0 or
v > 0, u = 0. We assume that we have inner solutions and the last two
equations can be written as Hu = 0 and Hv = 0.

0 = sx2(1− x)− αxy − u (3.11)

0 = y(1− y) + βxy − v (3.12)

0 = γm− [σ
c1

x2
u + m(2sx− 3sx2 − αy) + βyn] (3.13)

0 = γn− [
c2

y2
v − xmα + n(1− 2y + βx)] (3.14)

0 = σ
(
1− c1

x
− 2b1u

)
−m (3.15)

0 = 1− c2

y
− 2b2v − n (3.16)

• From (3.11) and (3.12) it is obvious that the catch equals the
growth for both the predator and the prey in equilibrium.

u = sx2(1− x)− αxy (3.17)

v = y(1− y) + βxy (3.18)
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• In the case without harvesting equation (3.12) possesses two equi-
librium solutions, y = 0 and y = βx + 1. In the single species
model the predators carrying capacity is 1, positive growth from
predation increases it in the two species model. Equation (3.11)

gives that x =
1±
√

1− 4αy
s

2
or x = 0 in the case of no harvesting.

This gives three equilibrium solutions, x = 0, x = K0 (obtained by

the minus sign above) and x = K̂1 (by the positive sign above). In
the single species model carrying capacity fro prey is 1, the pres-
ence of predator decreases its upper limit to a level below. The
value x = K0 is called the minimum viable population level. If the
prey stock is below K0, it will be depleted (critical depensation).
For a more detailed discussion, please turn to Clark [5].

• (3.11) gives that y ≤ sx(1−x)
α

, (3.12) gives that y ≤ 1 + βx

If the predator stock exceeds this limit for small prey stocks it
could drive the prey to extinction. It is expected to have an
upper limit for the predator stock derived from the stock level of
prey in order to avoid extinction of prey.

• From (3.15) and (3.16) we notice that the shadow price is equal to
the marginal pro�t and that we have upper bounds on the shadow
prices in equilibrium. Remember the interpretation of m and n
as the marginal value of the state variable at time t.

(3.15) ⇒

0 = σ

(
1− c1

x
− 2b1u

)
−m (3.19)

m = σ

(
1− c1

x
− 2b1u

)
(3.20)

m = σ
∂Π1

∂u
or m ≤ σ

(
1− c1

x

)
(3.21)

In the right expression we have used the fact that 0 ≤ 2b1u

(3.16) ⇒

0 = 1− c2

y
− 2b2v − n (3.22)

n = 1− c2

y
− 2b2v (3.23)

n =
∂Π2

∂v
or n ≤ 1− c2

y
(3.24)
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In the right expression we have used the fact that 0 ≤ 2b2v
These bounds in equilibrium sound reasonable because if in-
vestment pays o�, we should stop harvesting and invest in
natural assets at the maximum rate.

• (3.14) ⇒ 0 = γn− c2
y2 v + xmα− n(1− 2y + βx)

0 ≤ γn + xmα− n(1− 2y + βx)

βxn− xmα ≤ n(γ − 1 + 2y)

x ≤ 1− γ − 2y
mα
n
− β

We will have an upper bound on the prey stock. We have used
the fact that c2

y2 v ≥ 0

• It is obvious that we have to assume that the �shery will have an
equilibrium in the case of no harvesting. We have the equations

0 = sx2(1− x)− αxy (3.25)

0 = y(1− y) + βxy (3.26)

From the discussion in section 1.3 we found that we had an equi-
librium if (βα− s)2 ≥ 4α. α and β are unsure parameters and we
assume that they can be chosen to �t this equation.

The equations (3.11)-(3.16) consists of six equations and six unknowns
that determines the equilibrium. By substitution the system can be
reduced to two equations in x and y. The roots of these polynomials
are the mathematically possible equilibriums. We choose the values
that are meaningful for our problem. These polynomials can be used
to study how the equilibrium depend on di�erent parameters in the
problem. We will use the solve command of Maple. A Maple code is
given in the appendix.

We now set the parameters to study how equilibrium changes with
the scaled discount rate γ = δ

r2
. An increase in γ results from an in-

crease in the discount rate δ or a decrease in r2(intristic growth rate
for predator). In this section the discussion of the discount rate implies
discussion of the scaled discount rate. The parameters we use are given
in table 3.2.

The interval of the scaled discount rate implies an unrealistic span of
discount rates, however the interesting values lie inside this interval, see
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�gure 3.1. Traditionally one expects that an increase in the discount
rate will result in an increase in harvest and a following decrease in the
optimal stock level. This is true for one-dimensional linear models. In
nonlinear multidimensional models, Sandal and Steinshamn [28] show
that this is not necessarily true. A higher discount rate leads to a
higher out-take in economic terms, but this does not necessarily lead
to a lower stock. If the demand is inelastic, a lower harvest would lead
to higher prices and lower harvest would result in a higher stock level
if we are to the right of the maximum sustainable yield. We will now
study the e�ect of di�erent discount rates on the equilibrium in our
model.

Figure 3.1: Equilibrium as a function of the scaled discount rate, γ. The left
�gure shows equilibrium for x,y,u,v, state and harvest for prey and predator,
respectively. x is the upper curve, y is the second upper curve, vmax is the
middle curve, v is the second lower curve and umax and u is the lower curve.
In the left �gure the costates n(upper curve) and m are displayed, associated
with y and x, respectively.

Our �rst conclusion from �gure 3.1 is that the changes in the steady
state stocks with the discount rate are relatively small.

The harvest of predator(v) increases as the discount rate increases,
which results in a lower stock level of predator. This result is clearly a
parallel to the single species case. The increased discount rate makes
it more costly to keep a large stock, and we transmute a part of it into
capital, yielding rent as expressed by the discount rate. For the prey
we also notice that the harvest(u) increases with the discount rate. In



3.2. HOW WE OBTAIN FEEDBACK SOLUTIONS 28

a single species model we would expect a subsequent decrease in the
stock level. However, we have a decreasing predator stock which a�ects
the growth positively.

When we maximize the net revenue w.r.t. the control, this is clearly
the best we can hope for. We plotted this control (static optimum, we
denote it by umax, vmax ) as dotted lines in the �gure. As the discount
rate increases, future is less important and we expect the harvest to
be closer to this level. It is shown that the harvest of the predator
approaches vmax asymptotically, as the discount rate increases. This
also goes for the prey where the harvest tracks umax quite closely with
increased discount rate.

The right �gure in 3.1 shows the changes in the shadow prices as a
function of the discount rate. As the discount rate increases, it makes
today's income more important than tomorrow's. This implies that the
marginal value of investment in the resource decreases.

3.2 How we obtain feedback solutions

In this section we will describe the method we use to solve our prob-
lem. The problem is given in a continuous time setting, such that the
�rst step is to formulate the problem in discrete time, as described in
section 2.4.2 on page 20. We then calculate the solution numerically by
using the Hamilton-Jacobi-Bellmann equation, introduced in the same
section. The Hamilton-Jacobi-Bellmann equation is given as:

Vh(x) = max
u

(
hΠ(x,u) + βVh(ϕ(x,u))

)
(3.27)

where β = 1− δh, h>0 is the time step, δ is the discount rate and

ϕ(x,u) = x + hf(x,u)

In this discrete time problem, the time is divided into two periods; The
�rst period which is the instant time, (it could be a year, a season, a
day) and the next period which is all future. h is the time step, that
is, the length for the �rst period. The state in the current period is
x, the state in the next period is ϕ(x,u). The left hand side is the
value of our problem. The �rst term on the right hand side is h times
current pro�t, β is the discount term multiplied by the future value.
This implies that the value of our system is the current pro�t plus the
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discounted future value of the resource, evaluated in the maximizing
policy. Our original problem is given in continuous time, so we will
choose this h small to get the approximation as close as possible.

Experience shows that it is most e�cient to combine two iteration
methods to solve the HJB-equation. In the policy iteration we max-
imize the right hand side of (3.27) with respect to the control variable,
and store the maximizing control as the optimal policy in a matrix.
Value iterations assume a �xed policy and apply the Hamilton-Jacobi-
Bellmann equation;

Vh(x) = hΠ̂(x) + βVh(ϕ̂(x)) (3.28)

Obviously, policy iteration evaluates much slower than value iteration.
Usually policy iteration will settle with a lot fewer iterations than the
value iteration, but without the maximization the value iteration eval-
uates much faster. We therefore perform many value iterations until
the value has settled. We next perform some policy iterations until the
policy has settled. As long as the estimated error(given as the di�er-
ence in the value between the two last approximations) is larger than
the tolerance error given in input, the program will keep on doing many
value iterations and some policy iterations.

It has been shown that this scheme will converge for all initial condi-
tions, (see section 2.4.2). We could only perform policy iterations and
still reach the solution, but we know that it is much more e�cient to
combine policy and value iterations.

We summarize our algorithm:

1. Perform one policy iteration

2. Perform several value iterations

3. Perform a few policy iterations

4. Repeat step 2 and 3 until the estimated error is small enough

The value of Vh for points x which are not grid points are determined
by interpolation. If the vector �eld given by ϕ(x,u) points out of the
state space, we set it equal to the boundary. In the discretization
process h is the time step. Small h gives high accuracy, we have used
h=0.05 in the example. From our scaling in chapter one we have the
new time, τ = r2t. Our time step equal to 0.05 is very small, and in
reality di�cult to handle. It would be a challenge to measure the stock
and regulate the harvest based on this short interval.
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3.3 Examples

In this section we were planning to present an example related to Nor-
wegian Fishery Policy. However, in lack of literature on correct para-
meters this example needs to be considered as results from our model
used on a general predator-prey relationship. We apply our method
on a �shery similar to North-East Arctic Cod(NEAC, Gadus morhua),
the single most important �shery in Norway and its prey, Barents Sea
Capelin(Mallotus villosus).

3.3.1 Predator(Cod) and one of it's Prey

The NEAC is the most important cod stock in Norwegian �sheries and
its main habitat is in the Barents Sea. (ICES �shing area Ia, IIb1 and
IIa2, �gure B.1, on page 61 cover most of this area). The Barents Sea
Capelin is the most important prey item for the stock of NEAC in the
Barents Sea, and cod is also the most important predator on capelin
in this area. The Barents Sea is one of the richest ocean areas. It
is capable of maintaining large �sh populations including cod, capelin
and approximately 150 other �sh species.

In this section our main aim is to �nd the optimal levels of exploita-
tion of the �sh resources, studied in a predator-prey relationship. The
code for programming in Matlab is given in the Appendix. We use
estimated parameters given in table 3.1. Note that these are probably
not correct parameter for NEAC and Barents Sea Capelin, but they
are chosen to be in the direction of this �shery. The pro�t function
for predator(NEAC) is taken from the article by Kugarajh, Sandal and
Berge [21]. The discount rate is set at 5 per cent. We scale our prob-
lem and give the calculated values of the scaled parameters in table 3.2.

We know that the cod is a very important and valuable �shery. In fact,
the Barents Sea cod stock is potentially the largest cod stock in the
world (Jakobsson [19]). For the capelin we know that during the 1970s
and 1980s between 90 and 99% of the landings were used as reduction
to �sh meal and oil. The rest has mostly been used for fresh and frozen
products and for roe production. This leads to the conclusion that we
consider a valuable predator and a �cheep� prey. From our introduction
on Marine Predators in 1.1, we can then conclude that the combination
of yields should be closer to the area B in �gure 1.1. That is, we expect
a greater harvest of cod than capelin. Note that we also need to con-
sider the value of the prey eaten by the predator, the biological cost. It
might not be a good investment to let a large part of the prey be eaten
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Parameter Value Description
r1 0.0002 Intristic growth rate for prey
r2 0.48 Intristic growth rate for predator
K1 11500 Carrying capacity for prey
K2 5000 Carrying capacity for predator
a 0.000096 loss because of predator
b 0.000017 gain from prey
p1 1 Price parameter for prey
p2 10.527 Price parameter for predator
C1 0 Parameter for prey
C2 8864 Parameter for predator
B1 0.002 Cost parameter for prey
B2 0.005973 Cost parameter for predator
σ 0.2185 Parameter to measure the pro�ts equal

Table 3.1: Parameter values

Parameter De�nition Value
γ δ

r2
0.10

s r1∗K1
r2

4.79
α aK2

r2
1

β bK1
r2

0.41
b1

B1r2K1
p1

11.04
b2

B2r2K2
p2

1.36
c1

C1
K1p1

0
c2

C2
K2p2

0.17

Table 3.2: Scaled parameter values

by the predator, it could be more pro�table to harvest the prey directly.

On the left side in �gure 3.2 we show equilibrium values as a function
of the coe�cient, α, which is the scaled predator coe�cient. A larger
α would yield lower growth for the prey and both equilibrium stock
level and harvest are decreasing. It follows that a decrease in the prey
stock in time would yield higher catch and a lower stock of predator.
In the right �gure we show the equilibrium levels for stock level and
harvest of predator as a function of the coe�cient, β. From the �gure
it is clear that the stock level and harvest of predator are increasing
as β is increasing. This is also expected, a larger β will increase the
growth curve for predator. For the prey, an increased stock level of
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Figure 3.2: In the left �gure: Equilibrium values as a function of α. In the
right �gure: Equilibrium as a function of β. Stock level of cod is the upper
curve, level of capelin the second upper curve, harvest of cod is the second
lower curve and the lower curve is harvest of capelin.

predator would yield a higher predation pressure, and both stock level
and harvest decreases.

Prey appears in shoals, and we assume that harvesting cost does not
depend on the size of its stock. This is why we set C1 = 0. The �gure
3.3 demonstrates the optimal harvest policy(u) for prey as a feedback
policy. At the �rst sight the �gure looks strange, we have a �gap� in
the middle of it. For small prey stocks the �gure tells us to harvest
at a high rate. Depending on the size of the predator stock we do not
harvest for larger prey stocks. Further increase in the prey stock yield
positive harvest. It is obvious that we have a critical level for prey
given by the size of the predator stock (critical depensation). If the
prey stock is below this level it will anyhow be depleted, and we har-
vest at a high rate. A prey stock close to its critical level from above
should not be harvested and as we see from the �gure, a moratorium
is introduced. Positive harvest is introduced for higher stock levels of
prey when the stock is not threatened by extinction. From equation
(3.11) we found that the prey had a minimum viable population. If the
population for some reason is below this level, it will lead to extinction
of the stock. A larger predator stock increases the minimum viable
population for prey. When the stock of predator is close to zero(along
the x-axis), we notice from the �gure that we can harvest at a high
rate for all stock levels of prey.
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Figure 3.3: Optimal harvest for prey, x is the prey stock and y is the predator
stock. Prey is modeled by depensation, which explains harvest for a small
prey stock.

From �gure 3.4 we see that harvest of predator is increasing as its
standing stock increases. The harvesting cost of predator increases as
its stock decreases, and harvest for a low stock level of predator is not
pro�table. We notice that when prey has reached a level of approx-
imately 0.15 and the predator stock is at a level of 0.3, the harvest(v)
increases further. But as the prey stock grows to a level above, it is
somehow reduced. This appears for larger stock values as well. The
increase and the following decrease looks like a wave in the policy. This
needs to be investigated more closely.

When we study the stock levels where the harvest(v) is �on the wave�,
we notice that these values correspond to the �gap� in the optimal har-
vest of prey, �gure 3.3. The explanation is clear: In the gap prey is
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Figure 3.4: Optimal harvest for predator (cod), x is the prey stock and y is
the predator stock. We observe a �wave� for corresponding values where we
had a �gap� in the optimal harvest of prey, �gure 3.3.

close to being extinct and we have to be careful harvesting it. In ad-
dition, the predator stock reaches a level where it could threaten prey
and we �nd it optimal to increase the harvest of the predator.

We introduced the static optimum in a previous section. It is found by
maximizing the net revenue (w.r.t. the policy) and is clearly the best
we can hope for. The static optimum for predator is

∂Π2

∂v
= 0 ⇒ vmax =

1− c2
y

2 · b2

=
1− 0.1684

y

2.7236

In �gure 3.5 we plot the optimal harvest for predator in the same �gure
as vmax. From the �gure we notice that our optimal policy for predator
exceeds its static optimum for some stock levels. The level where the
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Figure 3.5: Static optimum harvest for predator, vmax, compared to its
optimal harvest. In an aerea where prey is close to be driven to extinction
we observe that our optimal harvest of predator exceeds its static optimum.

optimal policy(v) exceeds vmax corresponds to levels in the left bottom
of the gap in �gure 3.3. This implies that prey is close to its critical
level, and it is then optimal to harvest more of the predator in order
to reduce the predator pressure. This action might save the prey from
extinction.

The optimal harvest for prey is below or equals umax = 0.0453 for all
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stock levels. Along the x and y-axis and for large values of prey its
optimal harvest is practically equal to the static optimum of prey.

The pro�t function for predator is depending on the stock size, y, which
gives predator an economic protection. When the stock decreases it will
become less pro�table to harvest. For some stock level the pro�t will be-
come negative and harvesting will not be optimal, i.e, v=0. The pro�t
from harvesting prey does not depend on the stock size, x (C1 = 0).
For a small prey stock, our solution tells us to harvest at a high rate, a
moratorium is introduced when we have a stock of prey large enough
to survive.

We know that the prey will be exterminated for small stock levels. The
reason for this could be consumption by the predator or our harvest. If
the extinction is caused by the predator, we could increase the harvest
of predator for small stock levels of prey. In addition a dependency
of the prey stock, x, in the utility function (C1 > 0) would lead to a
decreased harvest for small stock levels of prey and probably introduce
a moratorium on the prey �shery for a small stock. This could might
rescue the prey from depletion. However, with our utility functions, a
moratorium for small stock levels of prey is not optimal.

From the value plot, �gure 3.6, we see that the value does not have
the same form in the x-direction and in the y-direction. This is caused
by the di�erent growth functions. The prey, x, is modeled by using
a growth function with depensation, that is, when the sea is short of
prey the growth is small and in presence of predator it can be negative.
A stock of prey large enough to survive gives an increase in the pro�t,
which is displayed as a wave in the x-direction. We notice that for a lar-
ger predator stock the wave �starts� at a higher prey level, the critical
prey level increases with the predator stock. To the left of the wave the
prey stock has a small or no value caused by critical depensation. For
the predator we used the logistic growth function. The growth is large
even when the stock(y) is at a low level, the predator stock can recover
from any positive level. This growth function yields a high increase
in the value, displayed as the steep wall along the x-axis. The value
increases from a low level when the predator stock(y) is zero, to a much
higher level in a very short time as the predator stock increases. The
value does not reach the expected value zero, an empty sea should not
be pro�table. This is due to our harvest of prey for a small standing
stock.
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Figure 3.6: Value of the �shery

The vector �eld, �gure 3.7, shows how the state will move in time when
our optimal policy is applied. We observe two equilibrium points in the
vector �eld. One is unstable, and occurs for a low prey level. The other
one is stable and occurs at (x,y)=(0.68,0.985). It exists a stable equi-
librium and this point will be our solution. More data on the steady
state is found in table 3.3. When we �rst arrive at the stable equi-
librium point, these stock levels can be sustained for all future. Note
that we will probably never reach the exact equilibrium point, but the
stock is close to the theoretic steady state, and in practice equal to it.
From the vector �eld it is clear that for small prey levels, prey could
be driven to extinction by following our optimal policy.

We next compare some starting points in the vector �eld. We know
that the Barents Sea Capelin have had two collapses, in the �rst one
in 1987 with stock levels (y = 0.224, x = 0.0093). When we start at
this collapse level, we end up along the y-axis, i.e. the prey will be
depleted. We thereafter compare starting points close to the gap in the
policy for prey, �gure 3.3. We notice that if we start in a point to the
left of the gap, prey will be depleted by following our optimal policy. A
starting point in the gap or to the right of the gap will give a solution
path which ends in the stable equilibrium point.
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Figure 3.7: Vector �eld

In our model a collapse as we have had in the history of Barents Sea
Capelin would drive the prey stock to extinction. However, the gov-
ernment introduced a moratorium on the prey �shery. This gave the
stock of prey a chance to replenish. In our model we harvest capelin at
a low stock level, and we introduce a moratorium as optimal when the
prey stock is large enough to survive. For the predator stock �xed at
y = 0.22 (which was the level of predator during the collapse) we have
a moratorium for approximately 0.1 ≤ x ≤ 0.22. During the collapse
we had x = 0.0093.

The vector �eld shows the direction of the solution, but the time it will
take to reach the equilibrium is not displayed. Figure 3.8 shows the
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solution curve in the vector �eld and the developments of stocks and
harvests over time. ICES 2005 [16] gives the actual stocks for NEAC
and Barents Sea Capelin. We evaluate the average from the years 1990-
2000 and �nd x = 0.22, y = 0.32. From the vector �eld we observe
that the system will reach the equilibrium solution after about 15 years.

Figure 3.8: Gives the solution path in the vector �eld and the corresponding
development of state and harvests as a function of time. The initial stocks
are (x,y)=(0.22,0.32). x is the stock of prey, y is the stock of predator.
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Scaled values Real values
Standing stock Prey 0.6775 7 792 000 tonnes

Standing stock Predator 0.9850 4 925 000 tonnes
Annual catch Prey 0.0419 231 000 tonnes

Annual catch Predator 0.2866 688 000 tonnes
Table 3.3: Steady state equilibrium for predator and prey. These values are
given by the Maple program (Appendix B).

In the case without harvesting the phase plane consists of four iso-
clines. The intersection of the isoclines are the equilibrium points of
the system. From ẋ = 0 we have two isoclines, the y-axis(x = 0) or the
parabola from equation (3.11) with u = 0. From ẏ = 0 we have the x-
axis(y = 0) and the straight line from equation (3.12) with v = 0. This
results in �ve equilibrium points; (0,0),(0,1),(1,0) and the intersections
of the parabola and the straight line. (0,0),(0,1) are unstable, (1,0)
have trajectories towards the point when x is weak. The remaining
points have been discussed in section 1.3. In the case of harvesting it
is clearly seen from our vector �eld (�gure 3.7), that the equilibrium
points are modi�ed from the case without harvesting. We now have
the equilibriumpoints; (0,0),(0,1),(1,0) and the intersection of equa-
tions (3.11) and (3.12) following our optimal policy. The lower point
of intersection between the line and the parabola is a saddle point, the
entry to the equilibrium point is the tangent of the parabola and the
vertical line through the equilibrium point. The upper point of inter-
section is a stable focus, the curves are spirals converging toward the
point.

The next �gure provides plots that shows the equilibrium as a function
of the parameter b1 and b2. A larger b implies that the market is more
sensitively on quantity and result in a price reduction. The left �gure
in 3.9 the equilibrium as a function of b1 is displayed. An increased b1

makes the prey less pro�table, and the optimal harvest is at a lower
level. This gives a higher stock level for prey and a following increased
stock level for predator. From equation (3.20) the shadow price for
prey decreases as b1 increases, a lower price yields a lower marginal
pro�t. A lower b1 would probably �t the corresponding parameter for
Barents Sea Capelin better. The harvest of prey would then be at a
higher level, which is closer to the expected optimal harvest of Barents
Sea Capelin.
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Figure 3.9: On the left: Equilibrium as a function of b1. On the right:
Equilibrium as a function of b2. In both �gures the upper curve represents
stock level of cod(y), the second upper curve is stock level of capelin(x) the
second lower curve shows harvest of cod(v) and the lower curve is harvest of
capelin(u).

The right �gure in 3.9 displays the changes in the steady state equilib-
rium as the b2 parameter varies. A higher b2 results in a lower marginal
pro�t from predator harvest. The harvest of predator decreases and
we obtain an increase in the predator stock. This will increase the
predator pressure and the steady state for prey stock declines. A lower
marginal pro�t for predator indicate a decrease of its shadow price.

Comparison
Now we compare our optimal harvest with the actual harvest for the
predator. We have chosen our parameters for the predator close to the
actual parameters for NEAC. ICES 2005 [16] gives the history of stock
sizes and harvest for NEAC, we used data from the years 1972-2004.
Now we compare it with our estimated optimal harvest for predator.
We plotted the actual harvest as diamonds in the grid, see �gure 3.10.

In the �gure it is clearly seen that the harvest of NEAC has always ex-
ceeded our optimal harvest. Our results is in accordance with scienti�c
results, the actual harvest of NEAC has exceeded its optimal harvest
(Kugarajh, Sandal and Berge [21]).
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Figure 3.10: Comparison of our optimal harvest for the predator and actual
harvest for NEAC. It is clear that the actual harvest exceeds our optimal
harvest for all years.



Chapter 4

Conclusions

In the �rst section of this chapter we summarize and discuss the results
from the previous chapter in the setting of the existing literature on
this �eld. Secondly, we present some possible extensions of our model.

4.1 Summary and discussion

In chapter 1 we introduced our model. We introduced the possibilities
for equilibrium points. Chapter two is mainly theory on how to solve a
optimal control problem. In Chapter 3 we presented equilibrium solu-
tions and feedback solutions.

We opened for extinction of prey. Fisheries, which shape exploita-
tion paths, are facts. However, depletion is usually a result of several
factors. Richard Cashin [4] gives six reasons for the collapse of the
Canadian Northern Cod stock. They are (1) overly high Total Allow-
able Catch (TAC); (2) underreporting of catches and misleading data
for management; (3) destructive �shing practices such as dumping; (4)
foreign over�shing; (5) failure to control expansion of �shing e�ort; and
(6) unforeseen ecological changes, including cooling water temperature,
changes in water salinity, and shifting predator-prey relationships, par-
ticularly among seals, capelin and cod.

When the discount rate increases the traditional theory from single
species models would yield increased equilibrium harvest and a fol-
lowing decrease in the steady state stock level. As mentioned earlier
this is not necessarily true for the nonlinear multidimensional case. In
our two species model we observe an increase in both harvests, the
steady state predator stock decreases but equilibrium prey stock level
increases. This is in accordance with the results from Flaaten [10]:

43
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�The joint harvesting of a predator-prey ecological system can give the
traditional result of a rise in the discount rate, decreased optimal stocks,
or the untraditional result of an increase in one of the stocks�.

We observe a gap in the policy for the prey, and a corresponding wave
in the feedback policy for the predator. Our model will drive the prey
to extinction if the prey stock for some reason decreases under its crit-
ical level(critical depensation). This explains the increasing harvest for
small x values. We could leave the remaining prey stock in the sea as
food for predator, but we increase our pro�t by harvesting prey and
sell it on the market. The feedback policy for the predator changes
with x. When x(prey) is close to its critical level from above, we (do
not harvest prey and) increase harvest of predator in order to reduce
the predator pressure on prey.

Flaaten [9] formulates: �In the case of predator-prey interactions it is
well known from the ecological literature that the reduction of the pred-
ator stock level may increase the surplus production of the prey.� This
is the result we see from our feedback policy.

Our optimal harvest of prey re�ects a possible weakness in the model.
If the predator stock is large compared to prey, it will threaten the
prey stock. When the stock is close to zero our optimal policy tells us
to harvest at a high rate, caused by critical depensation. In our model
this is optimal, our pro�t is maximized by harvesting prey. A small
prey stock does not a�ect the harvesting costs. We have a problem of
deciding when to introduce a moratorium. It might be too late when
our model introduces it. For a smaller prey stock a moratorium on the
prey �shery combined with increased harvest of predator might rescue
the prey. However, this is not optimal with our utility functions. In
the Norwegian history, a moratorium on Barents Sea Capelin has been
a fact for several years with a low stock level. And the history of stock
levels shows that after some years the stock has recovered. This implies
that a growth with depensation may be a relatively rough approxima-
tion for capelin. Lately, the capelin stock has been at a low level, and
last year and the current year it has not been allowed to harvest the
Barents Sea Capelin.

Note that if one of our stocks is depleted (X=0 or Y=0) our problem
reduces to known single species model, see equation 1.11.

Summarizing, we have studied the equilibrium of our model and com-
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puted feedback policies for both the predator and the prey. We have
demonstrated a method that yields the optimal policy and for right
starting points leads to the optimal steady state. Furthermore, we
have given the dynamical behavior of the system as a function of time.

4.2 Further Work

In reality prices vary and costs are in�uenced by factors as technological
advancements, union negotiations, government policies and taxation
rates. Our model is deterministic, we could improve it by introducing
a stochastic growth function. Stochastic models covers uncertainties
s.a. shocks in the dynamics, stocks, catches or price.

Second, our thesis only involve one predator-prey relationship. Ob-
viously it would be a better approximation to involve several species.
The MULTISPEC model from the Institute of Marine Research(IMR),
Bergen(see Tjelmeland and Bogstad, 1998) is a biological model for the
Barents Sea �sh/sea mammal system. It is used to study the species
interactions quantitatively with the aim of improving the management
of species. It includes cod, capelin, herring, minke whale, harp seal and
species of zoo plankton.

Many, if not most renewable natural resources are harvested on a sea-
sonal basis, there is a period when the resource can grow undisturbed
and a harvesting season. Our model in discrete time could be extended
to include this property. The population next season can be expressed
in terms of this year's. We can use this estimate to predict maximal
sustainable catch, optimal �eet size, etc. The total stock is the stock
in the period without harvesting where it grows undisturbed minus the
harvest. We assume that the �shing season is relatively short with
respect to the closure period, the di�erence between them will be the
catch. r1 is the intristic growth rate r, multiplied by the time interval
for unharvested stock, r1 = rδt

x̂n = xn−1 + r1xn−1(1−
xn−1

K
) (4.1)

xn = x̂n − h (4.2)

Though NEAC spend most of its life in the Barents Sea, it migrates
both as juvenile and as a mature spawning cod. Including migration
would make the thesis more realistic. Another di�culty is where one
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of the stocks is �transboundary�, i.e. the �sh stock migrates across the
boundary of two countries. If one country has the main jurisdiction of
the prey and the other country the main jurisdiction of the predator,
it will complicate the model.



Appendix A

1.order Conditions

A.1 Necessary Conditions

In this section we will derive the necessary conditions for optimum in
the simplest optimal control problem. The derivations follow Kamien
and Schwartz [20].

We de�ned the system in equation (2.1). For simplicity, we derive
the conditions for one state variable and one control variable. The
calculations for several state and control variables is straight forward.
Let the multiplier function, λ(t), be any continuously di�erentiable
function. From the equation we get the equality

t1∫
t0

Π(x(t), u(t), t)dt =

t1∫
t0

[
Π(x(t), u(t), t)+λ(t)f(x(t), u(t), t)−λ(t)ẋ(t)

]
dt

The coe�cient of λ(t) must be zero if equation (2.1) is satis�ed. We
integrate the last term by parts:

−
t1∫

t0

λ(t)ẋ(t)dt = −λ(t1)x(t1) + λ(t0)x(t0) +

t1∫
t0

x(t)λ̇(t)dt

Then we substitute this into the �rst expression and get

t1∫
t0

Π(x(t), u(t), t)dt =

t1∫
t0

[
Π(x(t), u(t), t) + λ(t)f(x(t), u(t), t) + x(t)λ̇(t)

]
dt

−λ(t1)x(t1) + λ(t0)x(t0)
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It is easily seen that when u(t) is decided, we �nd x(t) from the di�er-
ential equation (2.1) and the initial condition.

Assume that u∗(t) is the optimal control and x∗(t) is the corresponding
optimal state. We now construct a family of comparison curves u∗(t)+
ah(t) , a is a parameter and h(t) is arbitrary, but �xed. Now we de�ne
y(t, a) as the state variable with the control: u∗(t) + ah(t). Obviously

y(t, 0) = x∗(t), y(t0, a) = x0 t0 ≤ t ≤ t1

for all a. Now we hold u∗, x∗, h �xed, and study the value depending
on the parameter a. Thus, we write:

J(a) =

t1∫
t0

Π(y(t, a), u∗(t) + ah(t), t)dt

=

t1∫
t0

[
Π(y(t, a), u∗(t) + ah(t), t) + λ(t)f(y(t, a), u∗(t) + ah(t), t) + y(t, a)λ̇(t)

]
dt

−λ(t1)y(t1, a) + λ(t0)y(t0, a)

Since u∗ is a maximizing control, the function J(a) assumes its max-
imum at a = 0, hence Ja(0) = 0.1 We di�erentiate w.r.t. a and evaluate
at a = 0:

Ja(0) =

t1∫
t0

[
(Πx + λfx + λ′)ya + (Πu + λfu)h

]
dt− λ(t1)ya(t1, 0) = 0

Πx, fx, Πu, fu, ya denotes the partial derivatives w.r.t. the index.
a = 0 so we have evaluated along (x∗(t), u∗(t), t). λ(t) was only re-
quired to be di�erentiable. To simplify the calculations we choose λ(t)
s.t. we don't need to determine di�cult terms.

λ̇(t) = −(Πx(x
∗, u∗, t) + λfx(x

∗, u∗, t))
λ(t1) = 0

Substituting for λ:

t1∫
t0

[
(Πu(x

∗, u∗, t) + λfu(x
∗, u∗, t)

]
hdt = 0

1Subscript denote the derivative: Ja(a) = dJ(a)
da
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h(t) is an arbitrary function. We choose h(t) equal to the inside of
the parenthesis above, h(t) = Πu(x

∗, u∗, t) + λfu(x
∗, u∗, t) and �nd a

necessary condition for optimum:

Πu(x
∗(t), u∗(t), t) + λfu(x

∗(t), u∗(t), t) = 0

We formulate the Hamiltonian:

H(x(t), u(t), λ(t), t) = Π(x(t), u(t), t) + λ(t) · f(x(t), u(t), t)

To summarize, we have now shown that if the functions x∗(t), u∗(t)
maximize (2.1), then there exists a continuously di�erentiable function
λ(t) s.t. x∗(t), u∗(t), λ(t) satisfy

Hλ = ẋ

λ̇ = −Hx

Hu = 0

 (A.1)

These are called the �rst order conditions (FOC) for optimality.



Appendix B

Programming

In this chapter we give the code for the data program that have been
used to calculate the solutions. To solve the equilibrium, Maple is used.
To �nd the feedback solution Matlab m-�les are used.

B.1 Equilibrium solution

Pontryagin gives us some necessary conditions for an optimal solution.
We have six equations to solve, which in equilibrium equal zero, 3.11-
3.16. It gets complicated and is di�cult to solve by hand. Maple is a
useful tool to calculate this equilibrium. Note that this code solves our
scaled problem and the parameters a(alpha),b(beta),s,c1,c2,gamma,b1,b2
are the scaled variables.

>restart;

We first define our scaled equilibrium equations:
>lkv:=(x,y,u,v,m,n,a,b,s,c1,c2,gamma,b1,b2)->

{s*x*x*(1-x)-a*x*y-u=0,y*(1-y)+b*x*y-v=0,
r*m-(0.2185*(c1*u/(x*x))+m*(2*s*x-3*s*x*x-a*y)+n*b*y)=0,
r*n-(c2*v/(y*y)-m*a*x+n*(1-2*y+b*x))=0,
0.2185*(1-c1/x-2*b1*u)-m=0,
1-c2/y-2*b2*v-n=0,
x>=0, y>=0, u>=0, v>=0};

We then create a procedure that inserts the parametervalues
and computes our solution

50
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>lsn:=proc(a,b,s,c1,c2,gamma,b1,b2)
local test,x,y,u,v,m,n;
if not type ([a,b,s,c1,c2,gamma,b1,b2], list(numeric))
then return('lsn(a,b,s,c1,c2,gamma,b1,b2)')
else test:=solve(lkv(x,y,u,v,m,n,a,b,s,c1,c2,gamma,b1,b2),

{x,y,u,v,m,n});
end if;
assign(test);
[x,y,u,v,m,n];
end proc;

A call that starts the computation. The parameters inserted must be numeric.
>lsn(a,b,s,c1,c2,gamma,b1,b2);

B.2 Feedback solution

HJB is the main program to �nd our feedback solutions. First we need
to de�ne our grid size. We give the vectors x1,y1 for the state grid
and u1,v1 for the policy grid as input. HJB maximizes the Hamilton-
Jacobi-Bellmann equation with respect to the policy. To make the
procedure most e�ective, it combines iterations with respect to the
HJB equation (Piteration) and a simpli�ed version of it(Viteration).
We would obtain the same result by performing only iterations w.r.t
the policy(Piteration), but it would take much longer time. When both
the value and the policy have settled, HJB draws the optimal policy
for both the predator and the prey stock, the value of the �shery, the
vector �eld and the change in time for the system.

function [W,u,v]=HJB(x1,y1,u1,v1,h,beta,wtol,utol,vtol,d)
%
% function [W,u,v]=HJB(x1,y1,u1,v1,h,beta,wtol,utol,vtol,d)
% is the main program
%
% Input:
% - x1 and y1 are row vectors defining the size of the state-grid
% - u1 and v1 are row vectors defining the size of the policy-grid.
% - h is the time step in the discrete time
% - beta is the discount rate, given as 1-delta*h (delta is the
% real rate of return)
% - wtol gives the accuracy for the valuematrix
% - utol gives the accuracy for the policymatrix of prey
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% - vtol gives the accuracy for the policymatrix of predator
% - d is used as distance to plot the vector field. We used 1
%
% Output:
% - W is the new valuematrix
% - u is the optimal policy for the prey
% - v is the optimal policy for the predator
%

tic; % measures the time our program uses

% This function defines the growth functions and the profit
% functions for both the predator and the prey.
[f,g,PI1,PI2]=deffunksj();

% This Opprett function makes the grids for the system and
% stores the computed growth and profit functions in all grid
% point in the matrix M.
[X,Y,U,V,XX,YY,UU,VV,M]=Opprett(x1,y1,u1,v1,h,f,g,PI1,PI2);

[m,n]=size(X);

W=zeros(m,n);
u=zeros(m,n);
v=zeros(m,n);
uplass=ones(size(XX));

% We first call Piteration once to get away from the zero policy.
[W,u,v,uplass]=Piteration(M,W,u,v,X,Y,XX,YY,UU,VV,beta,x1,y1,uplass);

wfeil=10*wtol; ufeil=10*utol; vfeil=10*vtol;
Q=W; q1=u; q2=v;
it=0;

% If the error is too large, we perform more policy and value iterations
while ( wfeil(end)>wtol || ufeil(end)>utol || vfeil(end)>vtol || (it<5) )

it=it+1;
wfeil(end+1)=10*wtol;

while (wfeil(end)>wtol)
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for i=1:45
Q=Viteration(Q,XX,YY,X,Y,beta,x1,y1,M,uplass);

end
wfeil(end+1)=max(max(abs(Q-W)));
W=Q;

end

ufeil(end+1)=10*utol;
vfeil(end+1)=10*vtol;

while (ufeil(end)>utol) || (vfeil(end)>vtol)

for i=1:4
[Q,q1,q2,uplass]=Piteration(M,Q,q1,q2,X,Y,XX,YY,UU,VV,beta,x1,y1,uplass);

end

ufeil(end+1) = max(max(abs(q1-u)));
vfeil(end+1) = max(max(abs(q2-v)));
wfeil(end+1)=max(max(abs(Q-W)));

u=q1; v=q2; W=Q;
end

while (wfeil(end)>wtol)
for i=1:20

Q=Viteration(Q,XX,YY,X,Y,beta,x1,y1,M,uplass);
end

wfeil(end+1)=max(max(abs(Q-W)));
W=Q;

end

end

% Plots the optimal policy for prey
figure
surf(X,Y,u),xlabel('x'),ylabel('y'),zlabel('U')

% Plots the optimal policy for predator
figure
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surf(X,Y,v),xlabel('x'),ylabel('y'),zlabel('V')%meshz

% Plots the value of the fishery
figure
surf(X,Y,W),xlabel('x'),ylabel('y'),zlabel('W')

% Plots the vector field for our solution
vektorfelt2(X,Y,h,d,f,g,uplass,[0.22:0.01:1.2],[0.32:0.01:1.5],u,v)
vektorfelt4(X,Y,h,d,f,g,u,v)

toc;
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Opprett de�nes the grid of the system. We de�ne the size of the grid
by vectors x1,y1,u1,v1. It uses meshgrid to make one state grid and
one policy grid. For every grid point in the state grid it calculates the
growth and pro�t functions for every grid point in the policy grid. It
stores these values in M.

function [X,Y,U,V,XX,YY,UU,VV,M]=Opprett(x1,y1,u1,v1,h,f,g,PI1,PI2)
%
% [X,Y,U,V,XX,YY,UU,VV,M]=Opprett(x1,y1,u1,v1,h,f,g,PI1,PI2) make
% two grids and compute the growth and profit functions in every
% grid point.
%
%
% Output:
% -X and Y is the original state-grid.
% -U and V is the original policy-grid
% -XX,YY,UU,VV are the grids given in a compact form
% -M gives h times the computed values for the growth- and profit functions
% for every state and policy grid points.
%
% Input:
% -x1,x2 are row vectors defining the size of the state-grid
% -u1,v1 are row vectors defining the size of the policy-grid
% -h is the time step, we used 0.05
% -f,g are growthfunctions for prey and predator, respetively
% -PI1 and PI2 are the profit functions for prey and predator, respetively

% The grids are made by meshgrid
[X,Y]=meshgrid(x1,y1);
[U,V]=meshgrid(u1,v1);

% Here we introduce the compact form to ease the calculations later
YY=Y(:);
XX=X(:);
UU=U(:);
VV=V(:);

m=length(XX);
o=length(UU);
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%Initiation
M=zeros(m,o,4);

% For every point in the state grid, it computes the growth and
% profit functions in every point of the policy grid
for i=1:m

for k=1:o

M(i,k,1)=h*f(XX(i),YY(i),UU(k),VV(k));
M(i,k,2)=h*g(XX(i),YY(i),UU(k),VV(k));
M(i,k,3)=h*PI1(XX(i),YY(i),UU(k),VV(k));
M(i,k,4)=h*PI2(XX(i),YY(i),UU(k),VV(k));

end

end
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Piteration perform a policy iteration. For every point in the state grid
it runs through every point in the policy grid. It saves the policy that
maximizes the Hamilton-Jacobi-Bellmann equation. The best value is
stored in W and the optimal policy in u and v for prey and predator,
respectively.

function [W,u,v,uplass]=Piteration(M,W,u,v,X,Y,XX,YY,UU,VV,beta,x1,y1,uplass)
%
% [W,u,v,uplass]=Piteration(M,W,u,v,X,Y,XX,YY,UU,VV,beta,x1,y1,uplass)
% iterates to find the optimal policy.
%
% Output:
% -W is the new valuematrix.
% -u and v is the new policy matrix.
% -uplass gives the corresponding optimal gridpoint for every
% gridpoint in the state grid.
%
% Input:
% -M( , ,1) is h*f(X,Y,U,V), the time step multiplied with the
% growth function for prey.
% -M( , ,2) is h*g(X,Y,U,V), the time step multiplied with the
% growth function for the predator
% -M( , ,3) is the profit function for the prey
% -M( , ,4) is the profit function for the predator
% -W is the "old" value matrix. u and v are the "old" optimal
% policy.
% -X, Y is the original state grid
% -XX,YY is the "compact" state grid and UU,VV is the "compact" policy grid
% -beta is the discount term
% -x1 and y1 are row vectors defining the size of the state grid
% -uplass contains the optimal policy gridpoint corresponding to XX
% and YY

[m,n]=size(X);
Q=length(UU);

minx=x1(1); maxx=x1(end);
miny=y1(1); maxy=y1(end);

% Stores the optimal policy grid-point in uplass

for i=1:m
for j=1:n
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% r is the index change from an m*n matrix to an mn*1 matrix
r=i+(j-1)*m;
x=XX(r);
y=YY(r);

for q = 1:Q

nyu=UU(q);
nyv=VV(q);

newx=x+M(r,q,1);
newx=max(minx,newx);
newx=min(maxx,newx);

newy=y+M(r,q,2);
newy=max(miny,newy);
newy=min(maxy,newy);

% Because newx and newy may not be grid point, we
% interpolate to find their corresponding value.
neww=interp2(X,Y,W,newx,newy,'linear');

% The HJB-equation gives the value of our
% problem. We need to maximize it w.r.t the policy, u
test= M(r,q,3)+ M(r,q,4) + beta*neww;

% If this new value is larger then the value stored in the
% value matrix, we save this one.

if(test>W(i,j))
W(i,j)=test;
u(i,j)=nyu;
v(i,j)=nyv;
uplass(r)=q;

end

end

end
end
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Viteration computes a value iteration. For every point in the state grid,
it uses the optimal policy given from Piteration to evaluate the value
of the Hamilton-Jacobi-Bellmann equation.

function W = Viteration(W,XX,YY,X,Y,beta,x1,y1,M,uplass)
%
% W = Viteration(W,XX,YY,X,Y,beta,x1,y1,M,uplass) computes a value iteration
%
% Output: W is the new value matrix
%
% Input:
% -W is the value matrix before the iteration
% -XX,YY,UU,VV gives the grid for the problem
% -M(...,1) is h*f, the time step multiplied with the growth
% function for prey
% -M(...,2) is h*g, the time step multiplied with the growth
% function for predator
% -M(...,3) and M(...,4) are the profittfunctions for prey and
% predator, respectively
% -beta is the discount term
% -x1,y1 are row vectors defining the state grid
% -uplass contains the optimal policy gridpoint corresponding to XX
% and YY

[m,n]=size(X);

% We use these later to make sure that we are on the grid
minx=x1(1);
maxx=x1(end);

miny=y1(1);
maxy=y1(end);

% Computes the new value by running through the
% Hamilton-Jacobi-Bellmann equation in every position

for i=1:m
for j=1:n

% r is the index change from an m*n matrix to an mn*1 matrix
r=i+(j-1)*m;



x=XX(r);
y=YY(r);

% This is the corresponding optimal policy
q=uplass(r);

newx=x+M(r,q,1);
newx=max(minx,newx);
newx=min(maxx,newx);

newy=y+M(r,q,2);
newy=max(miny,newy);
newy=min(maxy,newy);

% Because newx and newy may not be grid point, we
% interpolate to find their corresponding value.
neww=interp2(X,Y,W,newx,newy);

% This is the Hamilton-Jacobi-Bellmann equation, which computes
% the value of our system
W(i,j)=M(r,q,3) + M(r,q,4) + beta*neww;

end

end
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Figure B.1: ICES �shing areas [17]
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