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Abstract

We develop a bioeconomic model to analyze a sole-owner �shery with �xed

costs as well as a continuous cost function for the generalized Cobb-Douglas

production function with increasing marginal returns to e¤ort level. On the

basis of data from the North Sea herring �shery, we analyze the consequences

of the combined e¤ects of increasing marginal returns and �xed costs. We

�nd that regardless of the magnitude of the �xed costs, cyclical policies can be

optimal instead of the optimal steady state equilibrium advocated in much of

the existing literature. We also show that the risk of stock collapse increases

signi�cantly with increasing �xed costs as this implies higher period cycles

which is a quite counterintuitive result as higher costs usually are considered

to have a conservative e¤ect on resources.

Keywords: Bioeconomic modelling; Stock collapse; Fixed costs; Pulse

�shing; Cyclical dynamics; Increasing marginal returns.
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1 Introduction

Most of the literature on �sheries economics assumes that the revenue func-

tion is concave in harvest (decreasing marginal returns), and in most cases,

especially in the sole owner case, the solution converges to an optimal steady

state equilibrium. After such an equilibrium has been established, harvest

and stock levels remain constant forever. There are, however, various reasons

why increasing marginal returns (non-concavities) may be relevant in �sh-

eries models, and especially in the case of sole owner �sheries or cooperative

games. Such reasons may for example be sharing of information, co-operation

between vessels on the �shing grounds, economies of scale in the technology,

etc. It is, however, not likely that these phenomena will occur in competitive

�sheries or non-cooperative game situations as the agents there will have

no incentives to co-operate, share information or apply economies of scale

beyond their own individual bene�t. In the presence of non-concavities in

the revenue function the optimal solution may no longer be a steady state

equilibrium. Optimal solutions may consist of various types of cyclical poli-

cies or pulse �shing implying, among other things, increased danger of stock

collapse even in the sole owner or cooperative case.

Empirically increasing returns have been found to exist for species such

as North-Atlantic cod (Hannesson [6]) and North Sea herring (Bjørndal and

Conrad [1]). Hannesson [6] found pulse �shing to be optimal for the cod

using an age-structured model.
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The dynamic optimization problem unquestionably becomes harder to

solve in the increasing return case as standard assumptions about dynamic

optimization theory fail. Also numerical solutions become more di¢ cult to

obtain as no rate of convergence can be derived from standard theory. In

order to solve the problem we have used a discretization algorithm described

in Maroto and Moran [16] in order to estimate the value function and the

corresponding optimal policy numerically.

In the present paper a bioeconomic model is applied to analyze a sole-

owner �shery with increasing returns to e¤ort level using a stock dependent

harvest function. The sole-owner case may also represent a cooperative case

through a construction like a Regional Fishery Management Organization

(RFMO). Special emphasis is put on the combined e¤ects of increasing re-

turns and �xed costs. Fixed costs are here de�ned as avoidable �xed costs

(AFC); that is costs that are �xed in the sense that they are independent

of the volume of the harvest as long as harvest is positive, but they become

zero when harvesting ceases. In practice, these can be thought of as the sum

of actual harvest-independent costs such as e.g. minimum wages to the crew,

etc., and the opportunity cost of harvesting; that is the revenue from the best

alternative activity. Re-entry costs are not considered as it is supposed that

the vessels use more or less the same gear and equipment when they engage

in other �sheries. Hence entry and exit to and from particular �sheries are

considered costless.

The model consists of a continuous harvest function within each period
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in order to take into account the change in the �sh stock that takes place

during the �shing season. Hence the cost of �shing is also a continuous func-

tion within the season. After harvesting has taken place there is a discrete

updating of the stock between the periods.

The main contribution of the present paper compared to the existing

literature is to show the following: First, in the presence of increasing mar-

ginal returns to e¤ort level in a stock dependent harvest function the optimal

steady state equilibrium advocated in much of the existing literature can be

suboptimal. When there are increasing returns, cyclical policies can be op-

timal regardless of the magnitude of the AFC. Further, in contrast to the

standard literature (Reed [20]; Lewis and Schmalensee [13]), such cyclical

policies are optimal even without introducing re-entry costs. In the North

Sea herring case considered in our numerical example such re-entry costs are

not relevant as the vessels have several alternative �sheries to choose among.

Although the cyclical policies take the form of "trigger recruitment - tar-

get escapement" policies, it is important to note that in our case these are

caused by the trade-o¤ between discounting the future and the convexity of

the revenue function in addition to possible �xed costs. In traditional models

with concave revenue such policies will never occur without some sort of �xed

costs or re-entry costs.

Secondly, we show that if the harvest function depends on the stock in

the beginning of each period, then a high, but still reasonable, discount rate

can cause extinction to be optimal even for stocks with high growth rates
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and in the absence of �xed costs. In the case of lower discount rates (higher

discount factor values), the resource might be in danger of collapse because

cyclical optimal policies drive the resource below the precautionary approach

reference point proposed by the International Council for the Exploration of

the Sea (ICES). This can be regarded as extensions of results obtained in

Maroto and Moran [17] where we, in contrast, use a stock dependent harvest

function. Previously, a proper form for the harvest or cost function that

takes account of the change in the stock during the �shing season has not been

established except for the trivial case of the Schaefer production function (e.g.

Jaquette [10], Reed [20]), and for the case in which the production function

is non-linear in stock level (Reed [21]) as far as we know. In this paper

we formulate the cost function for the generalized Cobb-Douglas production

function of which the above cases are a special case. This results in an explicit

cost function that depends continuously on both stock and harvest. In this

case (continuous harvesting case), we show that optimal cyclical policies can

periodically drive the resource to levels approaching Safe Minimum Standards

and below (stock-collapse) even in the absence of �xed costs. A continuous

cost function in both harvest and stock is the appropriate cost function to

use when the harvested fraction of the stock within a season is signi�cant

or when the stock is small. This implies that the stock can be economically

protected as the cost of harvesting escalates when the stock comes close to

extinction.

Thirdly, we show that higher AFC implies higher period cycles and con-
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sequently higher danger of collapse due to the combined e¤ect of increasing

marginal returns and AFC. This is a somewhat counterintuitive result as

higher costs usually are considered to have a conservative e¤ect on the stock.

The structure of the paper is as follows. In Section 2 we provide a back-

ground of continuous harvesting models with cyclical optimal paths. Section

3 presents the main bioeconomic model with a discussion about the con-

tinuous harvest function applied and in section 4 a discussion about the

consequences of �xed costs is given. Finally, in section 5 we present some

concluding remarks.

2 Background

Similar models as described above have been analyzed by e.g. Lewis and

Schmalensee [11, 12, 13] and Reed [20]). In Lewis and Schmalensee [12] a

continuous time model is used to show that under AFC and strict concavity of

the revenue function either continuous harvesting or extinction represent the

optimal policies. An important assumption in that paper, however, is that re-

entry into the �shery after harvesting has once ceased is impossible. Lewis

and Schmalensee [11], on the other hand, assume that re-entry is possible

and costless. They also consider AFC, and they show that the possibility to

enter and exit the �shery without re-entry costs e¤ectively eliminates the non-

convexity induced by the AFC. Further, they show that it may be optimal to

maintain the stock at a constant level through so-called chattering controls
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(in�nitely rapid changes in e¤ort and harvest). Such policies are cyclical but

the cycle intervals are of length zero and therefore infeasible for all practical

purposes.

In Reed [20] a discrete time model is used to show that under positive re-

entry costs an optimal policy is of the target-escapement type in the absence

of AFC. A necessary and su¢ cient condition for the optimality of cyclical

policies is given in Lemma 1 of Lewis and Schmalensee [13]. They show that

optimal policies are cyclical if and only if it is optimal to change the �shery�s

operating status (operating/vacated) in�nitely often. They get this result by

taking both AFC and re-entry costs into account simultaneously. Liski et al.

[14] improve the realism in their model by introducing �ow adjustment costs.

These adjustment costs represent �ow costs associated with, for example,

hiring more labour or buying new vessels. By doing this they show that for

relatively high adjustment costs the usual steady state is optimal whereas

for relatively low adjustment costs cyclical harvest policies become optimal.

The existence of cyclical optimal paths in present value optimization of

resource management was rigorously proved by Dawid and Kopel [4] from a

theoretical point of view, in a model with increasing returns to e¤ort level

in a stock independent harvest function and a piecewise linear growth func-

tion. Further research by these authors (Dawid and Kopel [5]) proved that,

if the elasticity of the convex revenue function is high enough and the growth

function is smooth and concave, there cannot exists an optimal steady-state

path. In that paper, they showed through a numerical experiment that a con-
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cave growth function and a concave cost function might give rise to cyclical

optimal paths.

The standard assumption on the growth function in the numerical analysis

of Dawid and Kopel [5] left open the possibility that optimal cycles due

to increasing marginal returns do exist in actual �sheries. The numerical

analysis based on the data of the North Sea herring �shery described in

Maroto and Moran [17] fully con�rms the plausibility of existence of optimal

cyclical paths in actual renewable resources management.

3 Bioeconomic model

In this section a bioeconomic model is developed to analyze a �shery with

increasing marginal returns as well as �xed costs. There is discrete updating

of the stock between the harvesting seasons and continuous harvest within

the season. Thus the cost function is a continuous function of both stock

and harvest during the harvest season.

The discrete population dynamics for the resource is given by

xt+1 � xt = F (xt)�Ht; (1)

where xt is the total biomass at the beginning of period t, F (xt) is the

natural surplus growth of the biomass at period t; and Ht is the total harvest
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at period t. By de�ning

f(xt) � xt + F (xt) (2)

as the recruitment (the stock at the beginning of the period) equation (1) can

be rewritten f(xt)� xt+1 = Ht. This implies a constraint on the escapement

(stock after harvesting) which we call y. This constraint in the optimization

problem described below is given by

y � f(x); (3)

which implies H = f(x)� y � 0.

3.1 Costs with continuous harvesting

In this section we develop a novel cost function which is depending on the

running stock size and harvest within each season. Let h and e be the harvest

and e¤ort rates and let x be the stock at time t. Further, let the instantaneous

production (harvest) function be a generalized Cobb-Douglas function

h = qe�x�; (4)

where q is constant, � is the e¤ort elasticity and � is the stock output elas-

ticity.
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Total costs during the harvest season are given by

C =

Z T

0

cedt; (5)

where T is the length of a harvest season and c is the instantaneous cost per

unit �shing e¤ort. During the harvest season we assume that the stock is

only being changed by �shing mortality. Hence �x = �h and

e = q�1=�x��=�h
1
� = q�1=�x��=�h

1
�
�1h = (6)

= q�1=�x��=�h
1
�
�1(��x) = �kx��=�h 1

�
�1�x;

where k = q�
1
� . Assuming a constant harvest rate through the season, and

using (6), the costs during the harvest season are given by

C =

Z T

0

cedt =

Z T

0

�ckx�
�
�h

1
�
�1�xdt = (7)

=

Z y

f(x)

�ckx�
�
�h

1
�
�1dx = ckh

1
�
�1
Z f(x)

y

x�
�
�dx =

= ckh
1
�
�1[x1�

�
�=(1� �=�)]f(x)y =

ckh
1
�
�1

1� �=� [f(x)
1� �

� � y1�
�
� ]:

The constant harvest rate in the season can be replaced by f(x)�y
T

in (7).

The costs during the harvest season are then given by

C(x; y) = �
f(x)� � y�
[h]'

= �
f(x)� � y�
[f(x)� y]' ; (8)
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where � = ckT'

�
, f(x) is as de�ned in (2), y is as de�ned in (3), k = q�1=�,

� = 1� �=� and ' = 1� 1=�.

The net revenue function from the �shery is given by

R(x; y) = pHt � C = p [f(x)� y]� C(x; y); (9)

where p is the unit price of harvest.

In order to take into account the presence of increasing marginal returns

and the relatively weak dependence between stock and catch per unit e¤ort in

this �shery, we assume an e¤ort elasticity � > 1 and a stock output elasticity

� < 1 in (4), respectively. As described below, these parameter values are

empirically estimated for �sheries on schooling stocks such as North Sea

herring (Bjørndal and Conrad [1], Hannesson [7]). Notice that the harvest

function estimated by Bjørndal and Conrad [1]

H(Et; Xt) = qE
�
t X

�
t ; (10)

represents the total catch during period t, but it is assumed here that they

represent a fairly good approximation to the parameters in (8).

11



3.2 The objective functional

The objective functional is the present value (PV ) of net revenues from the

�shery

PV =
1X
t=0

�tR(x; y) (11)

where R is as de�ned in (9) and � 2 (0; 1) is a discount factor.

The objective function can be rewritten

max
fxt+1g1t=0

1X
t=0

�tR(xt; xt+1) (12)

0 � xt+1 � f(xt); t = 0; 1; :::;

x0 > 0 given, R(xt; xt+1) � 0; t = 0; 1; :::;

where x0 is the initial stock level. If f(xt) is as de�ned in (2) then f(xt) �

xt+1 = Ht in (12).

Using the dynamic programming approach, we can de�ne the following

Bellman equation associated with (12)

V (x) = max
0�y�f(x)

fR(x; y) + �V (y)g: (13)

Unfortunately, a closed form solution of (13) is unattainable. The required

concavity assumptions on which the standard theory rests are not borne out

in this situation (see Stokey, Lucas and Prescott [22]) due to the presence of

increasing marginal returns. The standard theory is not able to assess any
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rate of convergence for the numerical algorithms. Subsequent increases in

the discretization grid used in numerical computations can cause signi�cant

changes in the outputs.

We use here the approach described in Maroto and Moran [15, 16], where

an alternative framework, based on Lipschitz continuity assumptions is pro-

posed. In Maroto and Moran [16], a discretization algorithm is described

for the numerical estimation of the value function and the optimal policy

correspondence solutions of (13).

3.3 Avoidable �xed costs

Fixed costs are here de�ned as avoidable �xed costs (AFC); that is, costs that

are �xed in the sense that they are independent of the volume of the harvest

as long as harvest is positive, but they become zero when harvesting ceases.

In practice, these can be thought of as actual costs that are independent of

the harvest volume such as minimum wages, etc., plus the opportunity cost

of engaging in the �shery. The latter is de�ned as the revenue from the best

alternative activity. In the current model, AFC are given by

AFC = c�v; (14)

where c� is a percentage of the variable cost per vessel c and v is the �eet

size in number of vessels which is given.

AFC as de�ned in (14) can be thought of as a measure of alternative
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activities from the �shery which range from zero to something around the

annual gain rate from the present �shery.

The Bellman equation is now written

V (x) = max
0�y�f(x)
RAFC�0

fRAFC(x; y) + �V (y)g; (15)

where RAFC(x; y) = R(x; y)� AFC.

Notice in Problem (15) that in the case in which y < f(x), the �shery

is operating (h > 0) which in turn implies positive AFC > 0. In this case,

negative pro�ts are possible. However, in the case in which y = f(x), the

�shery is vacated (h = 0) which in turn implies AFC = 0 in (15). In this

case, RAFC = 0. This means that the �shery may thus yield negative pro�ts

at su¢ ciently low levels of harvesting, even though zero harvesting would

produce zero net bene�ts.

3.4 North Sea herring �shery

In order to make realistic the numerical experiments while keeping their

scope of application wide enough, we take as our starting point the North

Sea herring �shery.

North Sea herring is a representative case of a schooling species. In spite

of its resilience and ecological value, this species has been driven to collapse

by heavy economic exploitation. Indeed, the North Sea herring stock was in

danger of extinction in 1977 when a moratorium on �shing had to be imposed
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due to the overexploitation su¤ered in the 1970s under an open access regime

(Bjørndal [2]). In the mid-1990s the North Sea herring stock was in danger

of collapse again (ICES [9]). Moreover, the medium term simulations of the

ICES indicate a high probability for the stock to be below safe biological

limits in future years (ICES [9]).

North Sea herring is a joint stock shared by Norway and the European

Union (EU). Currently, the total quota for the �shery is allocated between

the two parties with 29% to Norway and 71% to the European Union. In

Bjørndal and Lindroos [3], in a setting of discrete-time game-theoretic model,

it is analyzed how the total quota for this species should be shared between

these two parties so that both parties are satis�ed in a steady state equilib-

rium. Taking into account the di¤erent settings of the problems, the main

contribution of our results is to formulate a continuous cost function for the

generalized Cobb-Douglas production function with increasing marginal re-

turns, which is the key step to the obtention of cyclical policies. In this

article we look upon the herring �shery as if it was managed by an RFMO

adopting the behavior of a sole-owner.

The standard natural surplus growth for the North Sea herring is given

by the logistic function F (xt) = rxt(1�xt=K) where r is the intrinsic growth

rate and K is the carrying capacity of the environment.

In order to solve Problems (13) and (15), we use the following parame-

ters: p = 1; 318 NOK (Norwegian Kroner) per tonne of herring (source:

Norwegian Directorate of Fisheries [18]); c = 1; 091; 700 NOK (source: Nor-
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wegian Directorate of Fisheries [18]); v = 1000 vessels; r = 0:53; K = 5:27

million tonnes; x0 = 3:591 million tonnes (source: ICES [8]); q = 0:06152;

� = 1:356; � = 0:562; where p is the price in the year 2000 and c is the cost

of operating a Norwegian purse seine for one season in the same year. We

use the upper level of the �eet size of this species as a measure of the �eet

size v. The intrinsic growth rate r and the carrying capacity of the environ-

ment K are based on biological data for the period 1981�2001 (Nøstbakken

and Bjørndal [19]). The initial value of the stock x0 is from the year 2001.

Bjørndal and Conrad [1] estimated the constant q; the e¤ort elasticity � and

the stock output elasticity � (see Nøstbakken and Bjørndal [19] for details

on parameter estimation).

4 Numerical results

In this section we apply the numerical algorithm to analyze the optimal

policy dynamics in the continuous harvesting model (CH) described above.

Moreover, in order to analyze the role of harvesting costs depending on the

stock size at a particular time (e.g. start of the season), we also analyze the

optimal policy dynamics in the case of a harvest function which depends on

the stock in the beginning of each period. In this case, which we call standard

harvesting case (SH), and using the harvest function (10), the harvesting
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costs are then given by

C(Xt; Ht) = cEt = c

�
Ht

qX�
t

� 1
�

: (16)

Notice that these harvesting costs (see Nostbakken and Bjørndal, 2003) de-

pend on the stock in the beginning of each period, in contrast with the

continuous harvesting costs given by the equation (8) that take account of

the change in the stock during the �shing season.

All data in the example below were generated using a Compaq AlphaServer

GS160 6/731 ALPHAWILDFIRE Computer, coded in standard FORTRAN

77. The stock levels in all numerical proofs have been normalized, taking the

carrying capacity K = 5:27 (million tonnes) as unity.

4.1 Optimal policy dynamics without �xed costs

Results in Table 1 summarize relevant information on the optimal policy

dynamics without �xed costs of both standard harvesting case (SH) and

continuous harvesting case (CH). In all cases, we can observe in Table 1,

columns III and VII, that cyclical policies are optimal due to the presence

of increasing marginal returns. As explained in Figure 1 below, the cyclical

optimal policies consist of a period of heavy harvesting followed by periods

of null harvest (moratoria) until the period of harvesting is achieved again.

Results in Table 1, columns II, III, IV and V correspond to the solution

of Problem (13) with cost function (16) for di¤erent discount factor values
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�. This is the standard harvesting case (SH) without �xed costs.

In this case, biological extinction of the resource occurs for discount fac-

tors � � 0:71 (discount rates � 40%). The lowest stock of the cycle xSHmin

is less than the minimum spawning stock biomass benchmark Blim = 0:15

(800000 tonnes), proposed by ICES, for discount factor � 2 [0:72; 0:83] (dis-

count rates range from 20% to 38%). The stock is outside safe biological

limits for high discount factor values � 2 [0:84; 0:92] (discount rates range

from 8:7% to 19%) with Blim < xSHmin � Bpa, where Bpa = 0:25 (1:3 million

tonnes) is the precautionary approach reference point proposed by ICES.1

Thus, our numerical experiments show that if the harvest function de-

pends on the stock in the beginning of each period, then a high, but still

reasonable, discount rate can cause stock-collapse to be optimal even for

stocks with high growth rates and in the absence of �xed costs. Even in

the case of discount factors higher than 0:93 (discount rates � 7:5%), fairly

above those currently applied by economic agents, the lowest stock of the

cycle xSHmin is close to Bpa (see Table 1, column II).

Results in Table 1, columns VI, VII, VIII and IX correspond to the so-

lution of Problem (13) with cost function (8) for di¤erent discount factor

values. This is the continuous harvesting case (CH) without �xed costs.

1The data used to estimate the growth function are on total biomass �not on spawning
stock biomass (SSB). The SSB is (according to ICES) much smaller than total biomass.
The proportion of the SSB compared to total biomass has varied widely from less than
10% to more than 80%. In our comparison of biomass from our model and the minimum
spawning stock biomass benchmark Blim (given by ICES), the low xmin value is therefore
even more dramatic. Therefore, it reinforces our argument because if the total biomass is
below safe biological limits then certainly the spawning stock biomass must be.

18



With regard to the standard harvesting case analyzed above, an explicit

cost function that depends continuously on both stock and harvest preserves

the resource at higher stock levels. In particular, the lowest stock of the cycle

xCHmin � Blim = 0:15 for discount factors � � 0:75 (discount rates � 33%). The

stock is outside safe biological limits for discount factor values � 2 [0:76; 0:84]

(discount rates range from 19% to 31%) with Blim < xCHmin � Bpa. However,

the stock remains inside safe biological levels (xCHmin > Bpa) for discount factors

� > 0:84 (discount rates < 19%).

Results in Table 1, columns IV and VIII correspond to the optimal har-

vest in the cycle for both the standard harvesting case (HSH) and continuous

harvesting case (HCH). In all cases, we can observe that the optimal harvest

in the standard harvesting case is greater than that obtained in the case

of continuous harvesting and consequently the stock becomes in danger due

to lower minimum stock in the cycles xSHmin < xCHmin. Therefore, due to the

stock dependence in the costs a standard harvesting model that uses too

large stock (the recruitment stock) will underestimate the total costs and

thereby overestimate the value of the �shing activity. On the other hand,

further numerical experiments show that, if one uses too small stock (the

escapement stock) one tends to overestimate the costs and hence underesti-

mate the value of the �shery. Under/overestimating these "unit-costs" has

the normal e¤ect of increasing/decreasing the pressure on the stock (as seen

by minimum stock in the cycles xSHmin), i.e. these kind of variable costs has

a conservational implication (higher cost induces more conservative harvest
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policy). However, in the case of continuous harvesting (CH), the optimal

policy is achieved through a more regular harvesting plan that reduces the

periods of null harvest, increasing the regularity of harvesting by reducing

the period of the optimal cycle and preserving the stock by augmenting the

minimum stock in the cycles xCHmin.

4.2 Optimal policy dynamics with avoidable �xed costs

Results in Table 2 summarize relevant information on the optimal policy

dynamics in di¤erent settings for a discount factor � = 0:9 and di¤erent

values of the AFC as de�ned in (14). In particular, columns III, IV,V and

VI correspond to the solution of Problem (15) with cost function (16). This

is the standard harvesting case (SH) with AFC. Columns VII, VIII, IX and

X correspond to the solution of Problem (15) with cost function (8). This is

the continuous harvesting case (CH) with AFC.

In both cases, the presence of AFC changes the optimal policy dynamics

signi�cantly. In particular, if we compare these results with that obtained in

the absent of AFC, we can see that the risk of collapse of the species increases

signi�cantly even for low AFC values. For instance, in the case of c� = 0:1

(AFC = 0:109 thousand million NOK), xSHmin ranges from 0:25 to 0:2 < Bpa,

and xCHmin ranges from 0:32 to 0:25 = Bpa (see Table 1, columns II and VI, for

� = 0:9, and see Table 2, columns III and VII, for c� = 0:1).

We can observe in Table 2, columns II,III, IV,VII and VIII, that higher

AFC imply higher period cycles with lower minimum stocks xmin, and conse-
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quently the resource becomes in danger (xSHmin ' Blim and xCHmin < Bpa) due to

the combined e¤ect of increasing marginal returns and AFC. This is a some-

what counterintuitive result as higher costs usually are considered to have

a conservative e¤ect on the stock. However, in the presence of increasing

marginal returns cyclical optimal policies, with periods of heavy harvesting

followed by long moratoria, drive the resource below Bpa even in the absence

of AFC. Thus, if high enough AFC are also considered, then the period of the

cycles increases (larger harvesting followed by longer moratoria) in order to

avoid the AFC and consequently the risk of collapse of the species increases

signi�cantly.

Figure 1 represents the optimal policy dynamics with its correspond-

ing optimal harvest H� and net revenue Rt for the continuous harvesting

case with AFC = 0:218 thousand million NOK (see Table 2, columns VII,

VIII and IX for c� = 0:2). In particular, Figure 1a represents the concave

growth function of the resource f(xt) as de�ned in (2) (diagram above 45

degree line), the optimal policy correspondence (thick line), and the opti-

mal policy dynamics from the initial stock level x0 = 3:591=5:27 = 0:68

(discontinuous line). We can see in this �gure that the optimal policy cor-

respondence represents the optimal stock level in the next period x�t+1 (after

harvesting) as a function of the current stock level xt. For example, the op-

timal stock level x�t+1 = x�1 is obtained from the initial stock level xt = x0

through the path x0 ! a ! b ! x�1. In this way, the optimal policy dy-

namics from the initial stock level xt = x0 is obtained through the optimal
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path x0 ! b ! c ! d ! e ! b with the associated optimal stock levels

x�1 ! x�2 ! x�3 ! x�4 ! x�1. This means that there is a strongly attractive

period-four cycle traced for t = 2001 from the initial stock level x0.

Figure 1b represents the optimal harvest H� associated with the optimal

policy correspondence represented in Figure 1a. For example, the optimal

harvest from the initial stock level xt = x0, H0 = f(x0) � x�1, can be ob-

tained through the path x0 ! f ! g ! H0. We can observe in Figure

1b that there is no harvesting (moratoria) at low stock (normalized) levels

x 2 [0; x0], with x0 ' 0:56, due to the fact that the optimal policy corre-

spondence coincides with the growth function of the resource x�t+1 = f(xt)

for this range of stock values (see Figure 1a). With regard to the optimal

policy dynamics represented in Figure 1a, this means that, a big harvesting

H0 from the initial stock level xt = x0 is followed by three periods of null

harvest (H t = f(x�t ) � x�t+1 = 0; t = 1; 2; 3) until the stock level xt = x�4 is

achieved. The current stock level xt = x�4 represents the beginning of the

period-four cycle in which the harvesting H4 = f(x�4) � x�1 = 0:48 million

tonnes (see Figure 1b and Table 2, column IX, for c� = 0:2) is followed by

three periods of null harvest until xt = x�4 is achieved again. We can observe

in Figure 1a that the lowest stock of the cycle xCHmin = x
�
1 = 0:25 is just the

Bpa for a discount factor � = 0:9.

Figure 1c represents the net revenue functions Rt; t = 0; 1; 2; 3; 4, which

correspond to the current stock levels of the optimal policy dynamics xt =

x0; x
�
1; x

�
2; x

�
3; x

�
4, as a function of the stock level in the next period xt+1. For
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example, the net revenue R0 associated with the initial stock level xt = x0

and the stock level in the next period xt+1 = x�1, is obtained through the

path x0 ! a ! b ! R0. Notice that, in spite of the same optimal stock

level in the next period x�t+1 = x
�
1 obtained from xt = x0; x

�
4 (see Figure 1a),

R0 > R4 (see Figure 1c) due to the fact that H0 > H4 (see Figure 1b).

Finally, we can observe in Figure 1c that Rt = 0; t = 1; 2; 3, due to the null

harvest associated with xt = x�1; x
�
2; x

�
3 (see Figure 1b) which in turn implies

the absence of AFC.

5 Concluding remarks

In this article we have analyzed a �shery with increasing marginal returns as

well as �xed costs. Fixed costs are de�ned as avoidable �xed costs (AFC) in

the sense that they are constant for a positive harvest level and zero when

harvesting ceases. It has been demonstrated in the previous literature that in

the presence of such non-concavities the optimal harvest policy may consist

of cyclical behavior or pulse �shing instead of a steady state equilibrium.

In the present article we develop these models further by taking the stock

e¤ect during the harvesting season into account in a more general way than

earlier. Further, we show that when the harvest function is stock dependent

and there are increasing returns, steady state equilibria may very well be

suboptimal and cyclical policies can be optimal regardless the size of the AFC

even without re-entry costs. The previous literature has typically introduced
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re-entry costs in order to show that cyclical policies are optimal.

We have also shown that the role of the stock e¤ect on costs and harvest

within the harvest season. For example, if the harvest is more dependent

on the stock in the beginning of the season, then extinction may be optimal

even for stocks with high internal growth rate and without �xed cost if the

discount rate is su¢ ciently high without being unreasonable. In the case of

low discount rates the stock becomes in danger due to the cyclical behavior

as this drives the stock below safe biological limits1. It is also shown that

the risk of stock collapse increases signi�cantly with increasing AFC as this

implies higher period cycles. This is a fairly counterintuitive result as higher

costs usually are thought of as having a conservative e¤ect on the resource,

and so are low discount rates. Furthermore, applying an oversimpli�ed model

that estimates costs by using the stock only in the beginning of the harvesting

season will produce too high catch rates and thereby reinforce the tendency

to overexploitation.
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Table 1 

Numerical results without fixed costs for reasonable discount factor values δ[0.7,0.95].  

 

δ 

 

min

SHx  

Period of 

the cycle 

(SH) 

 

H
SH 

 

0( )SHV x  

 

min

CHx  

Period of 

the cycle 

(CH) 

 

H
CH

 

 

0( )CHV x  

0.7  extinction 0.79 4.270 0.09 5 0.42 3.755 

0.75 0.05 7 0.53 4.377 0.15 4 0.4 3.965 

0.8 0.13 5 0.5 4.729 0.19 4 0.44 4.394 

0.85 0.21 4 0.45 5.541 0.27 3 0.36 5.242 

0.9 0.25 4 0.48 7.445 0.32 3 0.37 7.143 

0.95 0.29 4 0.49 13.311 0.36 3 0.38 12.890 

 

The value xmin is the lowest stock of the cycle (million tonnes) in the optimal policy dynamics. The 

value H (million tonnes) is the optimal harvest in the cycle. V(x0) (thousand million NOK) is the 

net present value at initial condition x0=0.68. SH and CH represent the standard and continuous 

harvesting case, respectively.   

 

 



Table 2 

Numerical results with avoidable fixed costs (AFC) for a discount factor δ=0.9. 

 

c* 

 

AFC 

 

min

SHx  

Period of 

the cycle 

(SH) 

 

H
SH

 

 

0( )SHV x  

 

min

CHx  

Period of 

the cycle 

(CH) 

 

H
CH

 

 

0( )CHV x  

0.1 0.109 0.2 5 0.57 7.131 0.25 4 0.48 6.783 

0.2 0.218 0.2 5 0.57 6.864 0.25 4 0.48 6.466 

0.3 0.327 0.2 5 0.57 6.598 0.2 5 0.57 6.162 

0.4 0.437 0.16 6 0.65 6.341 0.2 5 0.57 5.896 

0.45 0.491 0.16 6 0.65 6.224 0.2 5 0.57 5.763 

0.5 0.546 0.16 6 0.65 6.108 0.2 5 0.57 5.629 

 

Avoidable fixed costs (thousand million NOK) are given by AFC=c*v, where c* is a percentage of the 

variable cost per vessel c=0.0010917 (thousand million NOK), and v=1000 is the fleet size. The value 

xmin is the lowest stock of the cycle (million tonnes) in the optimal policy dynamics. The value H 

(million tonnes) is the optimal harvest in the cycle. V(x0) (thousand million NOK) is the net present 

value at initial condition x0=0.68. SH and CH represent the standard and continuous harvesting case, 

respectively.  



 

  

 

 


