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Abstract 

The Baltagi-Griffin general index of technical change for panel data has earlier been applied 

to aggregated data via the use of period dummy variables. Period dummies force modeling 

into estimation of the latent level of technology through choice of dummy structure. Period 

dummies also do not exploit the full information set because the order of observations within 

periods is ignored. To resolve these problems, I suggest estimating the empirical equation for 

all possible structures of the dummy variables. The average over the different estimates 

provides an index of technical change. I demonstrate the method with both simulated and real 

data. 
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Introduction 

Economists hold technological progress to be an important source of growth, but its latent 

nature makes measurement difficult. Measurement is, however, a natural first step towards an 

understanding of the role of progress in growth beyond the normative. Much of the empirical 

literature focuses on the estimation of technical change in industry panels or cross sections. In 

a number of situations, however, only aggregated, industry-wide data are available. Examples 

are historical data, data from poorly monitored or informal industries, and data from 

developing countries. Faced with such data, economists can try to apply methods like state 

space modelling or nonparametric estimation. Alternatively, economists can turn to crude but 

simpler measures. One such crude measure is to introduce time period dummies into a 

regression of output on inputs to estimate an index of technical change. Period dummies have 

a number of intuitive and methodological issues. Perhaps the most striking issue is that the 

estimated index is a step function with a relative coarse resolution compared to the 

observation frequency. In most cases, estimates at the observation frequency are desirable. 

Further, a regression with period dummies is not information efficient and serial correlation is 

almost certain to occur. As it turns out, most issues with period dummies can be resolved with 

a quite simple procedure. 

 When introducing time period dummies into a regression of output on inputs, some 

choices have to be made. One is of period length and whether all periods should be of equal 

length (possibly except for a last, residual period). Periods of various lengths would require a 

fair amount of motivation and I will not consider various period lengths here. Once the period 

length, or analogously the number of periods, is decided, one is presumably forced to commit 

to a given structure of the period dummy variables. Embodied in this dummy structure are 

arbitrary period shifts decided ad hoc by the period length. The problem of arbitrary shifts is 

limited in that one should not interpret the step function literally, but remain because 

estimates are invariable to the order of observations within periods. That is, time period 

dummies do not exploit the full information set. Further, estimates of input coefficients are 

sensitive to the idiosyncratic choice of period length, and finally, period dummy regressions 

tend to struggle with serial correlation (Hannesson et al. 2010). 

 The procedure I suggest consist of repeated estimations of the empirical equation, 

where the period shifts and hence the dummy variables are shifted one observation at the 

time. If, say, the period length is 𝑙 such that each dummy variable covers 𝑙 observations (with 

a potentially shorter residual period), one needs to shift the dummy variables 𝑙 times before 

they have cycled through all possible configurations. For each observation, one then has 𝑙 
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equally relevant estimates of the level of technology. The average over the 𝑙 different 

estimates provides an index of technical change resolved at the observation frequency. The 

averaged index exploits the full information set in the sense that it is sensitive to the order of 

observations. In comparison, each of the 𝑙 different period dummy estimates are invariable to 

the order of observations within periods of the given dummy structure. Further, the averaged 

index improves goodness of fit and reduces serial correlation. In some examples, all traces of 

serial correlation are removed with a careful choice of the period length. 

 The key point is that with the average index, one is not forced to commit to any given 

period dummy structure. Rather, all possible, and at least a priori equally relevant, period 

dummy structures are invoked to avoid influence from ad hoc period shifts. 

 Hannesson et al. (2010) studied technological change in the Norwegian Lofoten cod 

fishery with time series on inputs (effort and stock levels) and output (catch). The data 

contained only aggregated, industry-wide data, and rather than pursuing advanced methods 

and a more demanding analysis, for example in state space (Harvey et al. 1986), they 

introduced time period dummies and ran ordinary least squares. They had in mind the general 

index approach of Baltagi and Griffin (1988) and related work, but without panel or cross-

sectional data. However, their period dummies essentially generated an artificial panel 

structure in the data. The estimated index became a step function with a coarse resolution 

relative to the observation frequency, while a finer resolution was desirable (Hannesson et al. 

2010, p. 757). (Obviously, they correctly interpreted their estimates as period averages, and 

insisting on the step function is admittedly pedantic, but is nevertheless what they estimated. 

On another note, they undoubtedly considered other options and probably chose period 

dummies because their relative ease of implementation compensated for the eventual loss in 

methodological sophistication and, one may speculate, the additional insight gained.) 

 Measurement of productivity and efficiency more generally is a long-standing topic in 

economics, and a plethora of methods and ideas have been explored. An early impulse to the 

literature was the seminal contribution by Solow (1957), who conceived of the notion of 

measure (shifts in the production function) pursued in much subsequent work; a notion that 

also lie at the heart of the approach I pursue here. While I cannot provide a full overview of 

the literature, I will mention a few interesting contributions. On a general level, Grilliches 

(1995) provide an insightful discussion on inter alia separability of production functions, 

relevance of data and models, and the link between public policy influence on research and 

development and the importance of economic and empirical understanding. Dorfman and 

Koop (2005) and related papers – their paper introduces a special issue of Journal of 
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Econometrics – draw up what may still be perceived as approximately the research front. 

Focusing on panel data, Stern (2004; 2005) discusses a number of different empirical 

methods. The unobservable nature of technical change invites state space approaches, and a 

number of studies have followed the lead of Harvey et al. (1986). An application to panel data 

is Slade (1989). State space models are now mostly applied in macroeconomics (see, for 

example, Fuentes and Morales 2011). 

 After Hannesson (1983) laid out the bioeconomic production function in fisheries 

economics and subsequent work by Squires (1992; 1994), Kirkley et al. (1995), and others, 

technical change in fisheries and other renewable industries has attracted increasing interest 

(see, for example, Jin et al. 2002, Fox et al. 2003, Kirkley et al. 2004, Hannesson 2007). 

Nevertheless, one may still argue that the topic has gained too little attention in the resource 

economics literature, in particular given its key role in growth (Squires 2009; Squires and 

Vestergaard 2013). 

 

Method 

I will use the model in Hannesson et al. (2010) as a starting point for my methodological 

discussion, in part because it was the inspiration for this work, but also because it is the only 

recent application of time period dummies to estimate technical change that I am aware of. 

Harvey et al. (1986) mention earlier uses in macroeconomic models. 

The empirical equation in Hannesson et al. (2010, p. 756) can be written as follows: 

 ln 𝑌𝑡 = ln𝐴 + ln 𝐹(𝑋𝑡) + ∑ 𝛽𝑖𝑑𝑖

𝑇−1

𝑖=1

+ 𝑒𝑡 (1) 

In (1), 𝑌𝑡 is output and 𝐹(𝑋𝑡) is a Cobb-Douglas function of the vector of inputs 𝑋𝑡. There are 

𝑇 periods and 𝑇 − 1 period dummies of equal length. The intercept (ln 𝐴) estimate the 

technology level in the residual period, and otherwise the estimate for period 𝑖 is ln 𝐴 + 𝛽𝑖. 

The period dummies essentially generate an artificial panel structure in the data and the 

coefficients represent period averages. The period averages are independent of the order of 

observations within given periods, and as such (1) does not utilize the full information set. 

Furthermore, period shifts are decided ad hoc by the period length. Alternatively, I suggest 

considering the ensemble of all possible dummy configurations and average estimates across 

them. 

 The ensemble of all possible dummy configurations is generated as follows. Take one 

feasible configuration of period dummies. Shift all dummy variables in one direction or the 
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other, for example such that the dummy variable that covered observations 𝑖 through 𝑗 now 

covers observations 𝑖 + 1 through 𝑗 + 1. The shifted dummy variables constitute a new 

configuration of the dummy variables. Repeat the procedure until all possible configurations 

are obtained (for a period length of 𝑙 observations, there are 𝑙 different configurations). To be 

specific, a feasible configuration here means the following: (i) All periods are of equal length, 

with exceptions for truncated periods at both ends of the time series. (ii) Every observation 

belong to exactly one period. (iii) Periods have no holes and cover subsequent observations. 

The ensemble of different dummy variable configurations and the procedure to obtain 

them are perhaps best illustrated with an example. Let the period length be 3 such that each 

dummy variable covers 3 observations. (A period length of 3 is perhaps short for a real 

application, but suffices for illustration.) There are three different possible dummy 

configurations (𝐷𝑖, 𝑖 = 1…3). In matrix representation, the different dummy variable 

configurations look like the following: 

 𝐷1 =

[
 
 
 
 
 
 
 
 
 
1
0
0

0
1
1

0
0
0

0
0
0

1
0
0

0
1
1

0
0
0

0
0
0

1
0
0

⋯

⋮ ⋱]
 
 
 
 
 
 
 
 
 

     𝐷2 =

[
 
 
 
 
 
 
 
 
 
1
1
0

0
0
1

0
0
0

0
0
0

1
1
0

0
0
1

0
0
0

0
0
0

1
1
0

⋯

⋮ ⋱]
 
 
 
 
 
 
 
 
 

     𝐷3 =

[
 
 
 
 
 
 
 
 
 
1
1
1

0
0
0

0
0
0

0
0
0

1
1
1

0
0
0

0
0
0

0
0
0

1
1
1

⋯

⋮ ⋱]
 
 
 
 
 
 
 
 
 

 (2) 

𝐷1 has period shifts between observations 1 and 2, 4 and 5, etc., 𝐷2 has shifts between 

observations 2 and 3, 5 and 6, etc., and 𝐷3 has shifts between observations 3 and 4, 6 and 7, 

etc. The three configurations are exhaustive in the sense that all possible period shifts are 

represented. (Note that the number of necessary periods required to cover all observations 

depend on the period length and the number of observations. For example, if the number of 

observations is divisible by 3 for the configurations in (2), 𝐷3 need one less period than 𝐷1 

and 𝐷2 to cover all observations.) The configuration that perhaps comes natural to mind is the 

third configuration in (2), with the initial period of equal length as other periods, and is indeed 

the type of configuration used in Hannesson et al. (2010) (notably with a longer period 

length). 

 As explained above, the estimated dummy coefficient for a given period represent a 

period average. When an equation like (1) is estimated three times (in the case with period 

length of three), each time with a different dummy configuration, the average dummy 

coefficient estimate over configurations will generally differ for all observations. (Note that 
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one dummy variable should be left out in each regression to avoid the dummy variable trap.) 

For observation number four, for example, the average estimate will be an average of three 

averages: the average for observations 2, 3, and 4 (for 𝐷1), the average for 3, 4, and 5 (for 𝐷2), 

and the average for 4, 5, and 6 (for 𝐷3). No other average coefficient will consist of these 

three averages, although two of them will contribute to the two neighboring average 

coefficients. In a way, the average dummy index is a rolling window smoother with period 

length as window size. But one should note that estimates for additional parameters (in 𝐹(𝑋𝑡) 

in (1), for example) will generally differ with different dummy structures, and as such, the 

average dummy index is something more than a simple moving average. 

 More generally, the estimation problem can be written as follows: 

 𝑌 =  [𝑋 𝐷𝑗]𝛽𝑗 + 𝜖 (3) 

where 𝑌 is a vector of 𝑛 observations for the dependent variable, 𝑋 is a matrix of 

corresponding observations of 𝑚 independent variables (including a constant), 𝐷𝑗  is a matrix 

of dummy variables as discussed above, 𝛽 is a vector of parameters, and 𝜖 is a vector of 

random errors. Given that all the usual assumptions hold, the ordinary least squares estimate 

of 𝛽 is relevant and given by  

 𝛽𝑗̂ = ([
𝑋𝑇

𝐷𝑗
𝑇] [𝑋 𝐷𝑗])

−1

[
𝑋𝑇

𝐷𝑗
𝑇] 𝑌 =  [

𝑋𝑇𝑋 𝑋𝑇𝐷𝑗

𝐷𝑗
𝑇𝑋 𝐷𝑗

𝑇𝐷𝑗

]

−1

[
𝑋𝑇𝑌
𝐷𝑗

𝑇𝑌
] (4) 

The inverse can be further expanded (see Lu and Shiou 2002 for a general treatment) and 

explicit expressions for the different elements of 𝛽𝑗̂ can be obtained. 𝛽𝑗̂ has two types of 

elements: 𝑚 elements corresponding to 𝑋 and elements corresponding to 𝐷𝑗  (as discussed 

above, the number of necessary period dummies to cover all observations differ across 

specifications, and consequently so will the number of elements in 𝛽𝑗̂ corresponding to 𝐷𝑗). 

Let 𝛽𝑋,𝑗̂ denote the first type and 𝛽𝐷,𝑗
̂  the second (see appendix for explicit expressions). 

Thus, 𝛽𝑗̂ = [𝛽𝑋,𝑗̂ 𝛽𝐷,𝑗̂]
𝑇
. For the first type of element, the average estimate over the different 

specifications is straight forward: 

 𝛽𝑋̂ =
1

𝑙
∑𝛽𝑋,𝑗̂

𝑙

𝑗=1

 (5) 

Notably, the intercept estimate in (4) correspond to the omitted dummy in 𝐷𝑗 , and the omitted 

dummy correspond to different observations depending on 𝑗. Thus, the average intercept 

estimate – a part of (5) – is not of interest here. Intercept estimates will rather enter in the 

average dummy coefficients below. 
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The average estimates corresponding to the dummy variables need to be treated a little 

different because 𝛽𝐷̂ has one element for each observation while 𝛽𝐷,𝑗
̂  has one element for 

each dummy variable. One also need to take care of the omitted dummy variable. (The 

construction below is admittedly somewhat cumbersome. I provide a small example in the 

appendix that may promote an understanding of the construction.) One way to define 𝛽𝐷̂ is as 

follows: Let 𝐷𝑗
∗ be the full representation of dummy variables for specification 𝑗, that is, 

including the variable omitted from 𝐷𝑗 . The relevant estimate for the omitted variable in 𝐷𝑗  is 

the intercept variable in 𝛽𝑋,𝑗̂, which I will denote 𝛽𝑋,𝑗
∗̂ . Further, let 𝛽𝐷,𝑗

∗̂  be identical to 𝛽𝐷,𝑗
̂  but 

with a zero element at the position corresponding to the omitted dummy in 𝐷𝑗 . For example, if 

the last dummy was omitted from 𝐷𝑗 , let 𝛽𝐷,𝑗
∗̂ = [𝛽𝐷,𝑗

̂ 0]
𝑇
. That is, a zero element is added at 

the end of the vector 𝛽𝐷,𝑗
̂ . The expression 𝐷𝑗

∗ × (𝛽𝐷,𝑗
∗̂ + 𝛽𝑋,𝑗

∗̂ × 1𝑛), where 1𝑛 is a 𝑛-vector of 

ones, is then an 𝑛-vector with the relevant estimate for observation 𝑖 in position 𝑖 for dummy 

configuration j. The average estimate over the different configurations is now a simple mean 

of these vectors for different 𝑗: 

 𝛽𝐷̂ =
1

𝑙
∑𝐷𝑗

∗ × (𝛽𝐷,𝑗
∗̂ + 𝛽𝑋,𝑗

∗̂ × 1𝑛)

𝑙

𝑗=1

 (6) 

Asymptotics of 𝛽𝑗̂ carry over in the linear combinations in (5) and (6), and 𝛽𝑗̂ can be assumed 

to be normal distributed with mean 𝛽𝑗̂ and variance equal to the average variance. 

 To apply the method outlined above, one need to decide on the period length. A long 

period length leads to a smoother trend, while a short period length will provide a closer fit 

(smaller root mean squared errors and coefficient of determination). Changing period length 

may further influence both coefficient estimates (𝛽𝑋̂) and serial correlation; Hannesson et al. 

(2010) took note of both effects, for example. One idea is to consider a criteria like the Akaike 

Information Criteria (AIC) for different period lengths, but statistics of fit and serial 

correlation should also be consulted. In all examples below, AIC and statistics of fit improve 

with shorter period length, while the Durbin-Watson statistic for serial correlation increase. 

One could perhaps entertain the idea to average across period lengths. But again, certain 

specifications may suffer from severe serial correlation and should likely not be included in 

such an average. Another idea is to set up a bootstrap-like approach where period lengths are 

sampled at random for a given specification. Averaging over many such specifications will 

make the results independent of period lengths. However, given the simple methodology 

above, to estimate the system for different period lengths is easy, and then consider for 
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example the trade-off between fit and serial correlation, and decide on an appropriate period 

length. I demonstrate this procedure in examples below. 

When compared with estimates from a single set of period dummies, the ensemble 

average has a number of advantages. First, there are no ad hoc period shifts, and the ensemble 

averages are fully sensitive to the order of observations; they use the full information set. The 

underutilization of the information set for a given, individual dummy specification justifies 

the repeated estimations and as such repeated usage of observations. The ensemble averages 

provide a trend estimate at the observation frequency, which is more intuitively appealing, 

and more readily interpreted, than period averages, and estimates at the observation frequency 

improve goodness of fit. Estimates at the observation frequency also facilitates hypothesis 

testing of the type: Did the event in a given year (if observations are yearly) impact the 

underlying trend? Period averages can generally not answer such questions. Finally, when an 

actual trend is represented by a mean over a number of observations, errors will be serially 

correlated. With estimates at the observation frequency, error serial correlation is much less 

likely. As one of the empirical examples below shows, using ensemble averages has much the 

same effect on the Durbin-Watson statistic as the Prais-Winston procedure that was used to 

deal with serial correlation in Hannesson et al. (2010). 

 The approach above is a simple solution to a difficult problem. Hannesson et al. 

(2010) turned to Baltagi and Griffin (1988) with a desire for model free estimates of technical 

change. The ingenious appropriation of period dummy variables takes one a long way, and 

indeed provides an appropriate description of the long run development. Description of short 

run dynamics is on the other hand not provided. Further, period length compromises 

independence from modeling. Short run development can be described by considering all 

possible dummy configurations, and the consequences of period length better understood. 

Nevertheless, more comprehensive approaches like state-space methods (Harvey 1989) or 

nonparametric regression may be called for. Indeed, in the absence of independent variables 

(𝑋), the approach above is simply a moving average, and ultimately a special case of a locally 

weighted regression (Cleveland 1979) with linearly declining weights and regression 

polynomial of order zero. I still find the approach above worthwhile to consider because of its 

simplicity and its close connection to standard regressions. 

 

Examples 

To illustrate the methodology, I provide four examples: two twin experiments with simulated 

observations from a known process, and two empirical examples. In the first, I sample from a 
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simple, nonlinear trend. I compare the average estimates with estimates using only one 

dummy specification. In the second example, I consider one of the regressions in Hannesson 

et al. (2010), again comparing the average estimates with estimates from a single dummy 

specification (the single specification is identical to the one used in the original analysis). In 

the third example, I sample from a stochastic trend. In the final example, I consider one of the 

estimations in Harvey et al. (1986). 

 I sample 𝑁 = 50 observations with the nonlinear trend 

 𝑥(𝑡) = (
𝑡

𝑁
)
2

 (7) 

I sample random errors 𝑒(𝑡) from a normal distribution with mean zero and standard 

deviation 𝜎 = 0.05 and have observations 𝑦(𝑡) = 𝑥(𝑡) + 𝑒(𝑡). The empirical equation is 

 𝑦𝑡 = 𝛼 + ∑ 𝛽𝑖𝑑𝑖

𝑇−1

𝑖=1

+ 𝑒𝑡 (8) 

I estimate (8) for a range of period lengths and consider AIC, root mean squared error 

(RMSE), the difference R-squared (𝑅𝐷
2 , see Harvey 1984), and the Durbin-Watson (DW) 

statistic. Figure 1 plot these statistics for different period lengths. AIC, RMSE, and 𝑅𝐷
2  all 

improve with smaller period lengths (AIC and RMSE become unstable at very short period 

lengths; this behavior should likely be takes as signs of trouble, short period lengths may for 

example lead to problems with the degrees of freedom, and longer period lengths should be 

chosen). The DW-statistic has a theoretical value of 2 for a series with no serial correlation; 

DW is closest to 2 when the period length is 𝑙 = 10. 

 Table 1 lists parameter estimates and statistics for the natural dummy configuration 

with all dummies of equal length (𝑙 = 10). Note that the dummy for the last period is omitted 

(here and in all subsequent examples). The negative 𝑅𝐷
2  means that the model gives fit worse 

than would a random walk with drift model and ‘should not be seriously entertained’ (Harvey 

1984, p. 270). Further, the Durbin-Watson statistic suggest rather severe serial correlation 

problems. 

Figure 2 (left panel) compare the predicted trend for the results in table 1 with 

observations 𝑦𝑡 and the underlying trend (𝑥𝑡). Figure 2 (right panel) make the same 

comparison for the average predicted trend across all configurations. (In the interest of space, 

I do not table results for all configurations, neither here nor in subsequent examples.) The root 

mean squared error (calculated with the average degrees of freedom across configurations) for 

the average predicted trend is 0.0651, while 𝑅𝐷
2 = 0.530 and the Durbin-Watson statistic is 
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2.05. All statistics are improved from those reported in table 1. In particular, the serial 

correlation problem is resolved. The average predicted trend (figure 2, right panel) fits quite 

well to the underlying, true trend. At the end of the time series, the fit deteriorates slightly 

because the last dummy variable has shorter length in most configurations and the estimate is 

less representative. This is less of a problem at the beginning of the time series because the 

underlying trend is relatively flat. 

 The simulation example shows that averaging over all possible dummy variable 

configurations improves statistics like root mean squared errors and 𝑅2 and the predicted 

trend is closer to the underlying, true trend. Further, the predicted trend is resolved at the 

observation frequency. 

As the underlying trend is known (7), I can calculate what I call the root mean squared 

true error (RMSX), defined as error relative to the underlying trend (rather than error relative 

to observations as in RMSE). I can also calculate the difference R-squared statistics relative to 

the underlying (true) trend. These statistics of fit relative to the underlying trend are plotted 

for different period lengths in figure 3. Both plots suggest that fit to the underlying trend is 

best with a period length of 𝑙 = 7. This example thus illustrates that both fit and serial 

correlation should be considered when deciding on the period length, and that the most 

appropriate period length may need to compromise between fit and serial correlation. 

 

Table 1: Coefficient estimates and statistics for (8) with a single set of dummy 

variables. See figure 1 for plot of observations. 

 

Estimate t-stat 

𝛼 0.841 26.4 

𝛽1 -0.795 -17.6 

𝛽2 -0.707 -15.7 

𝛽3 -0.561 -12.4 

𝛽4 -0.356 -7.92 

   

No. obs.  50 

DoF  45 

RMSE  0.101 

𝑅𝐷
2   -0.143 

𝐷𝑊  1.172 
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Figure 1: AIC, RMSE, 𝑅𝐷
2 , and the Durbin-Watson statistic for different period lengths 

for estimates of (8). 

 

 

 

Figure 2: Simulated observations (x-marks), underlying trend (shaded curve), and 

predicted trend (solid curve) with prediction interval (solid dashed curve) for 

simulation example (8) with one specification of the dummy variables (left panel) and 

the average over all specifications (right panel). 
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Figure 3: Fit statistics with respect to the underlying (true) trend (7) for estimates of 

(8) for different period lengths. 

 

Next, I apply the method to one of the regressions
1
 in Hannesson et al. (2010), which should 

be consulted for a description of the dataset and further background material. For simplicity, I 

ignore the Prais-Winston procedure that was applied to deal with serial correlation in the 

original analysis. The empirical equation is as follows: 

 𝑦𝑡 = 𝛼 + 𝛽𝑒𝑒𝑡 + 𝛽𝑠𝑠𝑡 + ∑ 𝛽𝑖𝑑𝑖

𝑇−1

𝑖=1

+ 𝜖𝑡 (9) 

𝑦𝑡 is the logarithm of output, 𝛼 is the intercept, and 𝑒𝑡 and 𝑠𝑡 are logarithms of inputs with 

elasticities 𝛽𝑒 and 𝛽𝑠. The period length is six years, and the dummy for the last period is 

excluded from the regression. Table 2 reports results from estimating (5) with the natural 

dummy configuration. The estimated trend is reported in figure 4. 

 Figure 4 also reports the trend from averaging over all configurations. The shown 

standard errors (dashed curves) pertain to the dummy variables to show differences in 

estimates. Standard errors between the two approaches are comparable, but the average index 

is reported annually while the single dummy set index reports six year averages. The errors 

increase toward the end of the time series because the intercept, which represent the residual 

final period, has large standard errors in the regressions. Average elasticity estimates are, with 

t-statistics in parenthesis, 𝛽𝑒̂ = 0.9496 (5.1283) and 𝛽𝑠̂ = 0.4641 (3.6656). The 

discrepancy between these estimates and the estimates reported in table 2 explain the 

difference in trend levels in figure 4, and also illustrate a problem by only considering one of 

several possible dummy configurations. The RMSE for the average estimation is 0.284, 

𝑅𝐷
2 = 0.644, and the Durbin-Watson statistic 1.862. All statistics are improved with the 

                                                           
1
 Regression (iii) for gear type gill nets, table 1, p. 756. 
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average index; the improvement in the Durbin-Watson statistic is nearly identical to the 

improvement that resulted from the Prais-Winston procedure in the original analysis. 

 Figure 5 reports AIC, RMSE, 𝑅𝐷
2 , and the Durbin-Watson statistic for a range of 

period lengths. The above reports for a period length of 𝑙 = 6 to compare directly to the 

original analysis. The pattern of the statistics in figure 5 is similar to the pattern seen in figure 

1. The Durbin-Watson statistic suggest that a period length of 5 would eliminate all traces of 

serial correlation while improving the fit statistics. 

 

Table 2: Coefficient estimates and statistics for (5) with a single set of dummy 

variables. Dummy variable coeffiecient subscripts denote observation years. 

 

Estimate t-stat 

𝛼 0.6188 0.5287 

𝛽𝑒 1.0331 5.8481 

𝛽𝑠 0.4224 3.6346 

𝛽00−05 -1.5517 -5.0093 

𝛽06−11 -1.4070 -4.5665 

𝛽12−17 -1.1434 -4.4246 

𝛽18−23 -0.6544 -2.6538 

𝛽24−29 -0.4840 -1.7397 

𝛽30−35 -0.4765 -1.6541 

𝛽36−41 -0.3859 -1.3992 

𝛽42−47 0.0154 0.0603 

𝛽48−53 -0.1520 -0.6295 

𝛽54−59 -0.3535 -1.6746 

𝛽60−65 -0.3597 -1.6145 

𝛽66−71 0.4250 2.0742 

𝛽72−77 0.1579 0.7615 

𝛽78−83 0.4038 2.0471 

   

No. obs.  89 

DoF  72 

RMSE  0.321 

𝑅𝐷
2   0.540 

𝐷𝑊  1.677 
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Figure 4: Technology index with single set of dummies (shaded curves) and with full 

set of dummies (solid curves) for estimates of (9). 

 

 

Figure 5: AIC, RMSE, 𝑅𝐷
2 , and the Durbin-Watson statistic for different period lengths 

for estimates of (9). 
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The next example consider a stochastic trend, following Harvey et al. (1986): 

 𝑦𝑡 = 𝑥𝑡 + 𝛿𝑧𝑡 + 𝜖𝑡 (10) 

𝑦𝑡 are the observations, 𝑧𝑡 are observed, independent variables (here, an observed random 

vector), 𝛿 are parameters corresponding to 𝑧𝑡 (here 𝛿 = 5), and 𝜖𝑡 are normally distributed, 

serially independent disturbance terms with mean zero and constant variance equal to one. 𝑥𝑡 

is the stochastic trend with slope, 𝛾𝑡, which evolve slowly over time: 

 
𝑥𝑡 = 𝑥𝑡−1 + 𝛾𝑡 + 𝜈𝑡 

𝛾𝑡 = 𝛾𝑡−1 + 𝜔𝑡 
(11) 

The disturbance terms 𝜈𝑡 and 𝜔𝑡 are both normal and independent with zero means and 

variances equal to 0.25, and all disturbance terms in the system are independent of each other 

at all times. Both 𝑥1 and 𝛾1 are set equal to zero, and 50 observations are simulated. 

 Figure 6 displays the observations 𝑦𝑡, the underlying trend 𝑥𝑡, and the average 

estimated trend with standard errors (𝑙 = 6 was chosen based on the best Durbin-Watson 

statistic). The observations are scattered substantially away from the trend because of the 

random vector 𝑧𝑡, but the trend is well estimated because 𝛿 is well estimated (estimate is 

𝛿 = 4.93, t-statistic is 17.3; t-statistic against the true value of 5 is 0.246). RMSE is 1.34, 𝑅𝐷
2  

is 0.958, and the Durbin-Watson statistic is 1.90. Notably, the estimated trend is much more 

smooth than the underlying trend, something that cannot be avoided when the underlying 

trend (11) has more structure than the empirical equation. A shorter period length could pick 

up more of this structure, but serial correlation would then have to be dealt with.  
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Figure 6: Simulated observations (x-marks), underlying trend (shaded curve), 

estimated trend (solid curve) with standard errors (dashed curves) for (10) and (11). 

 

Figure 7 displays, similar to figure 3, goodness of fit statistics based on the underlying (true) 

trend (11). In figure 3, both statistics suggested the same period length as preferable. In figure 

7, RMSX (left panel) is smallest at 𝑙 = 10, while the difference R-squared relative to the 

underlying (true) trend peaks at 𝑙 = 4. As RMSX is relatively flat near 𝑙 = 10, 𝑙 = 6, which 

corresponds to the best Durbin-Watson statistic, seems like a decent compromise. Plots of the 

various statistics was omitted, but displays similar patterns of the statistics as seen in figures 1 

and 5. 

 As an aside, I also estimated (10) without the trend component, that is, I simply 

regressed 𝑦 on 𝑧. The estimated coefficient was 4.92 (t-statistic 10.3), surprisingly similar to 

the actual value of 5, and indistinguishable from the coefficient estimated with the trend. But 

both RMSE (3.06) and 𝑅𝐷
2  (0.739) suggest the estimation with trend is better (the statistics for 

the model with trend was 1.34 and 0.958). Further, the Durbin-Watson statistic (0.363) 

suggest a substantial serial correlation problem when the trend is excluded. 
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Figure 7: Fit statistics with respect to the underlying (true) trend (11) for estimates of 

(10) for different period lengths. 

 

My last example considers one of the empirical equations in Harvey et al. (1986).
2
 The 

original equation contains a deterministic trend component. This component is left out here 

and replaced with period dummy variables: 

 
𝑛𝑡 = 𝛼 + ∑ 𝛽𝑖𝑑𝑖

𝑇−1

𝑖=1

+ 𝛽𝑛,−1𝑛𝑡−1 + 𝛽𝑛,−2𝑛𝑡−2 

+𝛽𝑞𝑞𝑡 + 𝛽𝑞.−1𝑞𝑡−1 + 𝛽𝑞,−2𝑞𝑡−2 +  𝜖𝑡 

(12) 

𝑁𝑡 are quarterly observations on employment in UK manufacturing from first quarter, 1963, 

to third quarter, 1983, while 𝑄𝑡 is an index of output (1980 = 100); variables in (12) are 

logarithms and denoted in lower case letters. The data was seasonally adjusted. See Harvey et 

al. (1986) for further background material and discussion of the theory behind the 

employment-output relationship. It should be noted that Harvey et al. (1986) had misgivings 

about the approach embodied in the original equation, in part because of the deterministic 

trend. Here, the deterministic trend has been replaced. 

 Figure 8 displays AIC, RMSE, 𝑅𝐷
2 , and the Durbin-Watson statistic for estimates of 

(12) averaged over all dummy variable configurations, for a range of period lengths. The 

overall pattern of the statistics is similar to patterns in earlier examples. The Durbin-Watson 

statistic is above 2 for all period lengths, suggesting negative autocorrelation, but is similar 

for 𝑙 = 6 and higher. As AIC and the goodness of fit statistics suggest smaller is better, I use 

𝑙 = 6 here. Table 3 contains results from the average estimation of (12). The reported degrees 

                                                           
2
 Equation (15), p. 981. Data was collected from Harvey (1989). 
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of freedom is averaged over the different configurations (as discussed above, some 

configurations require an additional dummy variable to cover all observations). 

 The estimated coefficients (table 3) are similar to those estimated in Harvey et al. 

(1986). In subsequent analysis, they concluded that the major problem with the deterministic 

trend equation was that the deterministic trend did not correspond well to the actual, 

underlying trend, while coefficient estimates was more or less reasonable. I am thus satisfied 

with the results in table 3. Goodness of fit, for example, is better here than for the estimations 

in the original analysis. 

 The estimated trend is shown in figure 9, and is similar in shape to the stochastic trend 

ultimately estimated by Harvey et al. (1986). (The level is different because of a different 

specification in the ultimate stochastic trend model in the original analysis.) In particular, the 

crucial feature of substantial changes in the trend in the late 1970’s is evident, and agrees with 

a hypothesis of reduced rate of technical progress after the recession in 1974/5. 

 

Figure 8: AIC, RMSE, 𝑅𝐷
2 , and the Durbin-Watson statistic for different period lengths 

for estimates of (12). 
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Table 3: Averaged coefficient estimates and statistics for (12). 

 

Estimate t-stat 

𝛽𝑛,−1 1.42 12.6 

𝛽𝑛,−2 -0.467 -4.39 

𝛽𝑞 0.105 5.49 

𝛽𝑞,−1 -0.0139 -0.607 

𝛽𝑞,−2 -0.0523 -2.84 

   

No. obs.  81 

DoF (avg.)  61.7 

RMSE  0.00245 

𝑅𝐷
2   0.929 

𝐷𝑊  2.57 

 

 

 

Figure 9: Underlying trend for estimates of (12). 
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Discussion 

The average index of technical change advances the idea to use period dummy variables when 

aggregated data is all that is available (Hannesson et al. 2010), and resolves most issues 

related to period dummies. For the unresolved issue of period length, unresolved in the sense 

that one has to use one’s judgement and consider the tradeoff between fit and serial 

correlation, I think the serial correlation problem should carry most weight. As the twin 

experiments above show, goodness of fit statistics increase steadily as the period length 

decreases, but fit with the actual, underlying process increases only up to a point. That is, for 

too short period lengths, noise is mistaken for signal. What constitutes too short is left for 

judgement, much like grid mesh size in numerical optimization procedures or bandwidth in 

nonparametric and kernel-based methods often are. 

 The average index seems to perform well in both the twin experiments and empirical 

settings above. A setting where it demonstrably does not perform too well is with a 

discontinuous trend; further unfavorable settings likely exist. In particular, structural 

information is not recovered with the average index, and results can for example not be used 

in forecasting. 

 The average index has here been presented as a method to estimate technical change in 

aggregated data settings. But the method can estimate any kind of trend without the aid of a 

model for the trend development. Implementation is easy, as it simply consist of regressions 

with all possible dummy variable configurations and then averaging across the regression 

results.  
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Appendix 

For completeness, I here provide the full expressions for the two types of elements in 𝛽𝑖̂, see 

(4): 

 

𝛽𝑋,𝑗̂ = (𝑋𝑇𝑋 − 𝑋𝑇𝐷𝑗(𝐷𝑗
𝑇𝐷𝑗)

−1
𝐷𝑗

𝑇𝑋)
−1

𝑋𝑇𝑌

+ (𝑋𝑇𝑋)−1𝑋𝑇𝐷𝑗(𝐷𝑗
𝑇𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝐷𝑗 − 𝐷𝑗

𝑇𝐷𝑗)
−1

𝐷𝑗
𝑇𝑌 

𝛽𝐷,𝑗
̂ = (𝐷𝑗

𝑇𝐷𝑗)
−1

𝐷𝑗
𝑇𝑋 (𝑋𝑇𝐷𝑗(𝐷𝑗

𝑇𝐷𝑗)
−1

𝐷𝑗
𝑇𝑋 − 𝑋𝑇𝑋)

−1

𝑋𝑇𝑌

+ (𝐷𝑗
𝑇𝐷𝑗 − 𝐷𝑗

𝑇𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝐷𝑗)
−1

𝐷𝑗
𝑇𝑌 

(A1) 

 Below, I write out expressions for the average dummy coefficient estimates in a small 

example with five observations and a period length of two (𝑛 = 5, 𝑙 = 2). The full 

representation for one of the dummy variable configuration is: 

 𝐷1
∗ = 

[
 
 
 
 
1
1
0
0
0

0
0
1
1
0

0
0
0
0
1]
 
 
 
 

 (A2) 

The last dummy is omitted from the regression. The coefficient matrix extended with a zero at 

the position of the omitted dummy is then: 

 𝛽𝐷,1
∗̂ = [

𝛽𝐷,1̂(1)

𝛽𝐷,1̂(2)

0

] (A3) 

The number in parenthesis simply denotes element number in the vector 𝛽𝐷,1̂, which full 

expression is given in (A1). The expression 𝐷1
∗ × (𝛽𝐷,1

∗̂ + 𝛽𝑋,1
∗̂  × 1𝑛) is then: 

 

𝐷1
∗ × (𝛽𝐷,1

∗̂ + 𝛽𝑋,1
∗̂  × 1𝑛) =  

[
 
 
 
 
1
1
0
0
0

0
0
1
1
0

0
0
0
0
1]
 
 
 
 

 × ([
𝛽𝐷,1̂(1)

𝛽𝐷,1̂(2)

0

] + [

 𝛽𝑋,1
∗̂

 𝛽𝑋,1
∗̂

 𝛽𝑋,1
∗̂

])  

=  

[
 
 
 
 
 
 
𝛽𝐷,1̂(1) + 𝛽𝑋,1

∗̂  

𝛽𝐷,1̂(1) + 𝛽𝑋,1
∗̂

𝛽𝐷,1̂(2) + 𝛽𝑋,1
∗̂

𝛽𝐷,1̂(2) + 𝛽𝑋,1
∗̂

𝛽𝑋,1
∗̂ ]

 
 
 
 
 
 

 

(A4) 

For the second dummy variable configuration, the corresponding expression becomes: 
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 𝐷2
∗ × (𝛽𝐷,2

∗̂ + 𝛽𝑋,2
∗̂  × 1𝑛) =  

[
 
 
 
 
 
 
𝛽𝐷,2̂(1) + 𝛽𝑋,2

∗̂  

𝛽𝐷,2̂(2) + 𝛽𝑋,2
∗̂

𝛽𝐷,2̂(2) + 𝛽𝑋,2
∗̂

𝛽𝑋,2
∗̂

𝛽𝑋,2
∗̂ ]

 
 
 
 
 
 

 (A5) 

Ultimately, the average over the two configurations – see (6) – become: 

 

𝛽𝐷̂ = 1 2⁄ ∑𝐷𝑗
∗ × (𝛽𝐷,𝑗

∗̂ + 𝛽𝑋,𝑗
∗̂ × 1𝑛)

2

𝑗=1

 

=  

[
 
 
 
 
 
 
1

2⁄ (𝛽𝐷,1̂(1) + 𝛽𝑋,1
∗̂ ) + 1

2⁄ (𝛽𝐷,2̂(1) + 𝛽𝑋,2
∗̂ ) 

1
2⁄ (𝛽𝐷,1̂(1) + 𝛽𝑋,1

∗̂ ) + 1
2⁄ (𝛽𝐷,2̂(2) + 𝛽𝑋,2

∗̂ )

1
2⁄ (𝛽𝐷,1̂(2) + 𝛽𝑋,1

∗̂ ) + 1
2⁄ (𝛽𝐷,2̂(2) + 𝛽𝑋,2

∗̂ )

1
2⁄ (𝛽𝐷,1̂(2) + 𝛽𝑋,1

∗̂ ) + 1
2⁄ 𝛽𝑋,2

∗̂

1
2⁄ 𝛽𝑋,1

∗̂ + 1
2⁄  𝛽𝑋,2

∗̂
]
 
 
 
 
 
 

 

(A6) 

From (A6), it is clear that in general, all elements of 𝛽𝐷̂ differ. 
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The Baltagi-Griffin general index of technical change for panel data has earlier 
been applied to aggregated data via the use of period dummy variables. Period 
dummies force modeling into estimation of the latent level of technology through 
choice of dummy structure. Period dummies also do not exploit the full informa-
tion set because the order of observations within periods is ignored. To resolve 
these problems, I suggest estimating the empirical equation for all possible struc-
tures of the dummy variables. The average over the different estimates provides 
an index of technical change. I demonstrate the method with both simulated and 
real data.
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