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Abstract

A dynamic optimization model with four state variables and two control
variables is developed in order to analyze a fishery where on fleet-segment is
targeting young fish and another fleet-segment is targeting older fish of the same
species. The state varibles are the biomass levels of young and old fish and the
stock of capital in each fleet-segment. The control variables are investment
or de-investment in each type of capital which again determine the harvest
rates. Irreversible investments are represented through an asymmetric cost
of investment. In addition market conditions, cost structure and technologies
differ between the two fleet-segments.

The model contains both biological interaction between young and old fish
(stock-recruitment, cannibalism) and economic interaction (inter-dependent mar-

ket prices).



INTRODUCTION

Many fish stocks are harvested by two or more different fleet segments. In partic-
ular, in most fishing nations fishing vessels can be divided into one of two groups,
namely small coastal vessels and larger ocean-going vessels. These are typically har-
vesting different species, but in many cases they are also competing about the same
species. When the latter is the case, there is a tendency that the coastal fleet, which
operates closer to land, targets larger and older fish that come near shore to spawn.
whereas the ocean-going part of the fleet targets younger and smaller fish that migrate
into open ocean to feed. There is also a cost difference between the two fleet segments,
and typically the larger ocean-going vessels are believed to have lower operating costs
than the smaller vessels. The reason for this, if it is the case, is simply some degree of
economies of scale. The large vessels have usually a lower labour/capital ratio than
the small vessels, and, at least in industrialised countries with high labour cost, this
implies lower total costs.

From a social point of view the advantage of the coastal fleet is that it mainly
harvests older fish and thus fully exploits the growth potential of the resource. The
ocean vessels, on the other hand, harvest on younger fish with an unexploited growth
potential. The advantage of this fleet is that it typically is more cost efficient.

There is in general both a biological and economic difference between the two vessels
categories that we shall concentrate on here, and the aim of this paper is to develop
a model that can be used to assess an optimal investment pattern over time when
these differences are taken into account. In order to avoid unnecessary complications
we assume nonvanishing equilibrium activity in both groups of vessels and we assume
efficient use of the capital at all points in time; in other words there is no overcapacity.
Hence, the harvest pattern emerges as a direct consequence of the investment pattern.

As far as we know, very little attention has been devoted to this question in the



fisheries economics literature. Armstrong and Sumaila (2001) study the allocation
rule applied to split the total allowable catch (tac) for Norwegian cod between coastal
vessels and trawler vessels and the implications of implementing an ITQ system for
this fishery. They find that the current allocation rule is far from optimal. Bjgrndal
and Gordon (2000) perform a cost analysis of the Norwegian spring-spawning herring
fishery with three different vessel types, purse seiners, trawlers and coastal vessels.
They find that purse seiners and trawlers are highly cost efficient compared to coastal
vessels, and that the average cost of harvesting is fairly constant for the purse seiners
despite large fluctuations in the fish stock.

The model applied in this paper is quite different from the models in the papers
mentioned above as it is a multi-dimensional dynamic optimization model with four
state variables and two control variables. The model is outlined in the next section,
then a couple of applications of the model are provided and finally a summary is

given.
THE MODEL

The model is stated as an optimal control problem. The state variables are the
following:

71 = biomass of small, non-mature fish,

Ty = biomass of spawning stock,

K, = capital in the fleet segment that harvests on zy,

Ky = capital in the fleet segment that harvests on xs.

The control variables are:

I; = investment in K,

I, = investment in K.



The harvest rate, h, is given by the production function
where ¢; are the catchability coeflicients. The profit, or net revenue, is given by

I(z, K, I) ZﬂkaI z = (z1,3,), K= (Ki,Ks), I=(l,1)

Hk(-'E;K;I) = (pk_Qkh)hk_ckKk Gk Ik th;

where pr, — Qrh is the unit price of harvest, which depends on total harvest h and py,
and () are parameters. In the special case that Qx = 0 the agents are price-takers.
The per unit operating cost of capital is cy.

The functions G(-) represent the cost of investment. In the following we assume
that there is one price for buying capacity and another price for selling capacity.
The price for selling capacity is typically lower than the price for buying capacity.
This is equivalent to a certain degree of irreversible investments. The price for buying
capacity in fleet segment i is p?, and the price for selling capacity is p. In the following

we assume pi-’ > p? > 0. With this assumption the G functions can be formulated as

G;(I;) = max(p! - Z,pZ L). (2)

as p? is in effect when I; > 0 and pf is in effect when I; < 0.

The objective then is:

max / e Sl dt
0

I, Iz

subject to the dynamic constraints given as:

K = —BKi+1,
K2 = —ByKo+ Iy, (3)
T = f1($01,$2) —vry—h=F (5131;302) ha,

Ty = fo(x1,22) +vr1 — he = Fy(x1,23) — ha,
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where dots are used to denote time derivatives. The parameters (3, represent the
depreciation rates of capital in the two fleet segments. If p? = p, there is no element
of irreversible investments (perfectly malleable capital), and if p{ = 0 and 3, = 0 then
there is perfectly irreversible investments. If p; = 0 but 8, > 0, then the capital is
quasi-malleable.

The parameter v denotes the part of z; that matures and enter the spawning stock
at any point in time. The functions f; account for recruitment, individual growth
and natural mortality for stock z;. The reason why x5 is one of the arguments in
f1 is twofold. First, the recruitment to the stock depends on the spawning stock.
Secondly, there may also be cannibalism, and therefore the natural mortality in z;
depends on x3. Cannibalism is also the reason why z; is included in f5 as individual
growth for larger fish may depend upon the biomass of small fish. The f-functions

will be specified as follows:

f1($1,332) = 171(7"1 + 5121 + U z2),

fo(z1,29) = zo(ry + Sa2 + uszy).

If there is cannibalism, then u; < 0 and us > 0. If both u; and uy are negative, then

we have competition.
First-order conditions

The current value Hamiltonian for the above problem is

H(.’B, K,I,/L,)\) = H(.’E, K, I) + Al(*ﬂlKl + Il) + /\2(—/62K2 + I2)
iy [Fi (21, 22) — e Ka] + pg [Fo(21, 72) — @2 K]

A= (A, 09), o= (1, 19),



where ); are the costate variables associated with capital and p, are the costate

variables associated with the fish stocks. From the maximum principle we have

H, =0=X\— , 1€{1,2}. (4)
—p;, I; <0
It is seen from (4) that the shadow price of capital is constant and positive when

capital is bought and negative when capital is sold

In addition we have the adjoint equations \; = 6\; — Hg, and f1; = 6p; — H,,,

implying
A= (84BN + qimip; + 2Q:q;:1 K; + (@inxj + @j(lixi) K; — R, (5a)
. OF; OF; ~ ~ ~
By = <5 - '5;) Hi — 8—;#]' + [Qiﬂi + Qih + Qi K + Q3¢: K — PZ] K, (5b)
using

Qr(zr) = Qrqrxr, Po(zr) = prgear — ek, 4,5,k = {1.2}, j #1.

As the MAs are constant, Equation (5a) can be solved for pu:
@iz = A = Pi(z:) — (6 + ;)\ — 2Quq:7: K — (Qz‘ijBj + Qj%‘-%"i) K;.  (6)
Equations (5b) then represent two equations to determine the relationships between
the four state variables and the two control variables. The structure of the equations
ensures that these two equations can be solved with respect to the controls. This can
be seen by the fact that the time derivatives on the left-hand side are expressions that
contain time derivatives of the state variables. These time derivatives are known from
the dynamic equations in (3). Hence we have two ordinary algebraic equations (not
DE) to determine the two control variables as functions of the four state variables.
Thus we have formally found a feedback policy, that is I; = g;(z, K), for the true

dynamic problem. In this article, however, we will concentrate on the analysis of

possible steady states.



Steady state

It is obvious that capital cannot be sold forever, hence from (4) I; > 0 and \; = p?
in a permanent steady state. Equation (6) is also valid in the dynamic setting (as
the As are constant), and it gives us the shadow prices of capital as functions of the
state variables, x and K. Further,

E;

K, = ,
q;T;

(0

from steady state with respect to the stock levels. Equations (6) and (7) inserted into
(5b) yields two equations for the two stocks:

AV 0.
<5+;>Ai+Q§'E'(H+Fj)+%'ﬂ2= (8)
OF; g;x; OF; Q, o

LN+ LA+ ECF 4+ F p g
ox; +quj o, J+xj it pi* i, JF1,

The two equations given in (8) are highly non-linear in the stock. They can, however,
easily be solved numerically, and thereby all values in steady state are determined.
These equations therefore represent a generalization of "the Golden Rule”.

In the special case that the fishermen are price-takers we have @z = 0, and the
equations are simplified as follows:

F OF; ;. OF;
<6+—>Ai = M+ I TN 4 Fpe g,
Z; q;T; 8.’171

8.’125 ‘
A = P— (645,10

Further, if the stocks in addition do not depend on each other, we get the following

equation for each of the stocks:

F OF
<5+;>-A_a—m-A+F-p-q.

Note that with quadratic F-functions, the problem given in (8) are two fourth-

degree equations, which is a practicable problem to solve.
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EMPIRICAL RESULTS

In this section we use data for the Norwegian fishery of Arctic cod. For this we need
economic data for prices, operating costs and investment costs and some biological
data for the stock dynamics. The economic data are taken from profitability analysis
performed by the Directorate of Fisheries Norway (2001) and the biological data are
taken from International Council for Exploration of the Seas (ICES, 2001).

Numerical specification

The numerical specification of the model is given in Table 1.

Table 1. Numerical specification
p 1598 pf 183

py 1496 ph 117

g 11100 pj O

ce 3500 p5 O

@, 0002 r 0.55

Q2 0.002 s; - 0.000096
By 003 wu O

By 003 7y 0.95

¢ 1 sy - 0.00066
g 1 ug - 0.00045
6 005 v 0.106

The economic parameters in Table 1 are derived as follows. The coastal vessels are
represented by the average of groups 1 - 10, and the ocean going vessels by group 14
(factory trawlers). Prices are first-hand prices for cod. The slope parameters of the

demand curves, (Q;, are chosen somewhat arbitrarily to indicate a weak price-quantity
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relationship or, in other words, an elastic demand. The intercept parameters p; are
then calibrated using price and quantity data for 2000 such that the prices in 2000
corresponds with the quantities in 2000. The same value has been used both for )y
and @)y to make the demand curves parallel.

The cost parameters ¢; are calibrated using variable costs adjusted for the average
time devoted to cod by each vessel group and applying the production function (1).
The prices for buying capital, p?, are calculated using the average depreciation for
each vessel group multiplied by the expected life time for the vessels. The prices for
selling capital, p;, will then be set to zero or 50 percent of the buying price depending
on our assumption about irreversibility.

The biological parameters are estimated using data from ICES (2001). The results
from the estimations are summarized in Table 2. Total spawning biomass is defined
as x9; and xp is defined as the difference between total biomass and zy. Data are

annual, and therefore the time derivatives are approximated as follows:
iz :$2(T2+82'(I72+UQ'$1)+’U'$1—h2.

The results of this estimation are summarised in Table 2

Table 2.

parameter value t-statistic other

- 0.95 4.55 R? = (.12
s - 0.00066 - 1.83 DW = 1.35

Us -0.00045 -236  F=25

v 0.106  2.63

The reported value for R? is fairly low, but this is typical for this kind of model. All
parameters are significant at an 8 % significance level. This also holds for the model
as such as indicated by the F-value. The DW-statistic reported here does not indicate

autocorrelation.
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The value found for v is now used as input when we estimate:
il =$1(’l"1 + 8121+ U '$2) —0106.’E1 — h,l.

From the first run it is evident that the parameter u; is not significantly different
from zero, and therefore the model is re-estimated with this parameter set equal to

zero. The results from this estimation are reported in Table 3.

Table 3.
parameter value t-statistic other

- T 0.55 7.22 R? = 0.46
81 - 9.6E-5 - 2.67 DW = 1.63
Uy 0 - F =293

The estimation reported in Table 3 is actually very good for this kind of model. All
parameters are significant at a 2 % significance level. This also holds for the model
as such as indicated by F. Further, the reported R? is very high for this kind of
estimation, and the DW-statistic does not indicate autocorrelation. The result that
1y equals zero indicates either that there is no significant cannibalism or spawning-
recruitment relationship, or that the two more or less cancel each other. The result
that uy < 0 indicates that there is no significant cannibalism but rather some degree
of competition for the food.

We will now proceed with these estimations as basis when analyzing optimal steady
states. As there is a high degree of uncertainty associated with many of the parame-

ters, sensitivity analysis will be crucial.
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Basic model

The results regarding the optimal steady state from the basic model described

above are summarised in Table 4.

Table 4. Results from the basic model
Year 2000 Optimum Change

1 820 2462 + 200 %
Ty 223 385 + 73 %
x 1043 2847 + 173 %
hi 289 012 + 77 %
hy 124 103 -17%

h 414 614 + 48 %
K; 0.333 0.208 -41 %
K, 0.557 0.267 -52 %

Several interesting things can be noted from Table 4. First of all, the optimal total
biomass should be 2.7 times higher than the present. It is, however, the stock of
young fish that ought to increase most. In fact, the stock of young fish ought to
increase three times whereas the spawning stock biomass ought to increase by a bit
more than 70 percent.

After this build-up of the stock has taken place, total harvest can increase by almost
50 percent. However, it is interesting to note that whereas the harvest of young fish
can be increased by almost 80 percent after an optimal build-up, the harvest from
the spawning stock should actually be decreased about 17 percent compared to the
present harvest. This result may come as a bit of a surprise as intuition tells us
that mature fish has already used most of its growth potential and therefore can
be harvested at a higher rate than young fish. A closer look at the figures tells us
that the harvest rate actually is higher for mature fish than for young fish. The

12



problem is that the rate of overharvesting is even higher for mature fish than for
young fish. Therefore the capacity in the fleet segment harvesting mature fish ought
to be decreased by more than 50 percent whereas the fleet segment harvesting young
fish should be decreased by about 40 percent.

All in all, these results indicate that there is huge overcapacity in both fleet seg-
ments. Further, the actual overcapacity is even higher than the results here indicate,
as present capacity has been calculated only on biological terms; that is as the ca-
pacity needed to take the present harvest when the fishery is performed efficiently.
This approach ignores the economic overcapacity due to inefficiency in the fishery.
Such inefliciencies are not a topic in this article, but there are strong evidence that
they are present and therefore the actual need for fleet reduction is even higher than
reported here. On the other hand, this assumes that maximizing economic returns
is the only objective. If, for example, labour employment is of any concern, than the
result may be different. At least the way the optimal steady state is approached in
the short run is affected by this. In this article, however, we mainly look at steady

states.
Sensitivity analysis

The empirical model presented above is rather stylized, and therefore it is of interest
to see how sensitive the main results presented above are to some of the more uncertain
parameters.

First we start by varying the output price level, that is the intercept of the demand
curve. As it is the relative price relationship between the two fleet segments that
counts, we only vary the price for fleet segment 1, p;, and keep all other parameters

constant. The price p; is varied by +/- 25 percent, and the result is reported in Table

13



Table 5. Results when p; is varied by +/- 25 %
p1 =11.98 p; =19.98

1 2639 2365
zo 373 391

x 3012 2756
hi 503 013
he 99 105

h 602 618
K, 0.191 0.217
Ky 0.265 0.269

As seen from Table 5, the results are not very sensitive to changes in the output price,
but there are some interesting points to note. The stock z; decreases with a higher
price as expected, but at the same time the stock zy increases. The overall stock
effect of an increasing price p; is a smaller stock. It is not obvious why the stock z
should increase when p; increases, but it has to do with the fact that the biological
parameter uy is negative. In other words, the direct decrease in z; has an indirect
positive effect on z,.

It can be noted that the same effects are observed when py is varied, but in this
case both stocks decrease when the price increase. This has to do with the fact that
uy; = 0. Further, we can note that the harvest from both stocks increase when the
price of stock one increases, but by a rather insignificant amount. As a consequence
the capacity in fleet 1 must increase, and also the capacity of fleet 2 increases, but
very little.

All in all, however, a quite significant variation in the output price only results
in moderate adjustments in the stock sizes, the harvest levels as well as in catching

capacities. Hence we can conclude that the results are robust with respect to the
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level of the output price.
The next question is how sensitive the results are to variations in the slopes of the
demand curves represented by the parameters )3 and (2. This is reported in Table

6.

Table 6. Results when the slope parameters )1 and @)y are varied

Q1 = 0.008 @1 = 0.002 @1 = 0.008

@1 =Q,=0
Q= 0.002  Qp—0008  Qp=0.008

2410 2844 2509 2708

Ty 369 408 447 446

xz 2779 3252 2956 3154

hy 513 487 509 498

hy 116 56 54 36

h 629 543 563 534

Ky, 0.213 0.171 0.203 0.184

K, 0.315 0.139 0.121 0.081

In the case where Q1 = Q2 = 0 the price is set equal to the actual price in 2002,
namely p; = 14.98 and py = 13.96. In the other cases the intercept of the demand
curves are the same as in Table 1. This means that in the three rightmost columns the
actual price is in effect reduced compared to the basic model. There are of, course,
numerous combinations that could be investigated, but the ones shown in Table 6
clearly indicate that the results are somewhat, but not very, sensitive to these two
parameters.

Next we test for sensitivity with respect to costs, and again it is the relative cost
relationship that counts. As the cost parameter is a much more uncertain parameter

than the output price, the parameter ¢; is now varied by +/- 50 percent. The results
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are presented in Table 7.

Table 7. Results when ¢; is varied by +/- 50 %
cy = 5550 ¢; = 22200

1 2195 2945
zy 403 357
r 2598 3302
hy 512 475
he 110 94

h 622 969
Ky 0.233 0.161
Ky, 0.272 0.263

As expected the consequences of a higher cost ¢; are the opposite of a higher price,
namely a higher stock x1, a lower stock z2 but a higher total stock. The harvest from
both stocks decrease and so do the capacities in both fleet segments. The results are
not very sensitive to changes in the cost parameter either, taking into account that
it has been varied by +/- 50 percent.

The optimal steady states are even less sensitive to the parameters associated with
investment, that is the prices of buying and selling capacity and the depreciation rate
of capital. In fact, the optimal steady states are hardly affected by changes in these
variables at all.

Therefore we turn to the biological parameters to see how sensitive the results are
to these. First we look at the biological parameters representing biological links such
as stock-recruitment relationship, cannibalism or competition for food, namely u;
and uy. The parameter values suggested by the data and used in the basic model
are u; = 0 and uy = —0.00045. This indicates that the stock of young fish is not
affected by the size of the stock of old fish, for example because the stock-recruitment

relationship is counteracted by cannibalism and/or competition for food. Numerous
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combinations of these parameters are possible, many of which yield no meaningful
results at all. A couple of examples, however, demonstrate that the results are highly
dependent on these parameters. The first example used here is when the values are
changed such that u; = —0.00045 and u, = 0. This indicates that young fish is
affected by old fish through competition or cannibalism whereas the affect of young
fish on old fish is insignificant. The results of this is reported in Table 8. In this case
the stock of young fish is reduced and the spawning stock is significantly increased. In
addition almost all harvest takes place from the spawning stock and hardly anything
from the young stock. Consequently capacity in fleet segment 2 must be increased
significantly and capacity in fleet segment 1 must be decreased accordingly.

The other example is when there is mutual competition and possibly cannibalism
such that both stocks affect each other negatively. In this example we have u; = ug =
—0.00045. The result is that the optimal size of both stocks are reduced compared
to the basic model. The harvest of young fish is reduced by about 50 % whereas the
harvest of old fish is increased. Also in this case the capacity in fleet segment 1 is
decreased and the capacity in fleet segment 2 is increased.

We also look at how sensitive the results are to changes in the intrinsic growth rates
ry and 7. If 7y is increased by 20 % this calls for an increase in the stock of young
fish and a small decrease in the stock of old fish, an increase in the harvest of young
fish and a decrease in the harvest of old fish and also a similar change in the fleet
segments associated with the two stocks. When 7y is increased, this calls for a small
reduction in stock 1 and an increase in stock 2, almost unchanged harvest of stock 1
and increased harvest from stock 2. Accordingly there will be a small decrease in the
capacity in fleet segment 1 and an increase in fleet segment 2.

All in all, the results are quite sensitive to changes in the biological parameters and
the productivity of the stocks. This implies that it is more important to put effort

into estimating the correct biological parameters than the economic parameters, and,
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especially, the parameters related to investment turn out not to affect the steady

states very much.

Table 8. Sensitivity analysis with respect to biological parameters

u; = —0.00045  uy = —0.00045
! ! o4+ 20% ry 4+ 20%

uy =0 ug = —0.00045
1 1263 1863 3094 2390
zy 710 289 369 448
r 1973 2152 3463 2838
hi 4 252 795 513
hy 475 175 75 149
h 479 427 870 662
K; 0.003 0.135 0.257 0.215
Ky, 0.67 0.605 0.204 0.333

Finally, we will also take a look at how sensitive the steady states are to a change
in the discount rate. This is done by setting the discount rate to zero instead of five
percent. This is a quite significant change in the discount rate, and the results are
reported in Table 9. First of all, we note that the change in any of the variables
is not higher than 9 percent, indicating that the results are not very sensitive to
discounting. Secondly, we note that all changes are as expected except, namely that
a lower discount rate implies a higher standing stock and lower harvest and effort;
except that the stock of old fish is slightly reduced instead of increased. This obviously
has to do with the biological interaction between the stocks. As the parameter us is
negative there is a negative effect of x; on x9, and therefore the required increase in
z1 indirectly implies a small decrease in z5. This is associated with the fact that x;

is more important economically than x5 in this model.
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Table 9. Changed discounting
6=0.05 6=0 Change
xy 2462 2642 4+ 7%

To 385 376 -2%
x 2847 3018 +6%
hi 512 503 -2%
he 103 97 -6 %
h 614 600 -2%

K; 0.208 0190 -9%
K, 0.267 0.257 -4%

CONCLUSIONS AND SUMMARY

A model with two fleet segments and a fish stock divided in two cohorts has been
presented. The fish stock is divided in young fish and old fish, and there is a biological
relationship between the two, for example stock-recruitment relationship, cannibal-
ism, competition for food, etc. In addition, at each time period a certain proportion
of the stock goes from the cohort of young fish into the cohort of old fish. Each fleet
segment catches exclusively either young fish or old fish. The fleet segments are char-
acterized by different costs structures, they get different prices for the products, they
may have different depreciation rates and they pay different prices for investment
in new capital. In addition to the biological interaction there is also an economic
interaction as the price each fleet segment gets depends not only on own harvest but
also on the harvest of the other fleet segment. It is assumed that all capital avail-
able is used in each time period such that harvest is regulated through investment or
disinvestment in capital. In other words, there is no excess capital. The model can

vary from completely malleable capital through semi-malleable capital to completely
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irreversible investments by determining the buying and selling price of capital and
the depreciation rate.

The model has been applied to the Norwegian cod fishery where large trawlers
typically harvest young fish whereas smaller vessels harvest from the spawning stock.
The trawlers get a higher price but also have higher costs. The biological data suggest
a negative effect from young fish on old fish (competition) and zero effect from old
fish on young fish. The result from the basic model is that the total stock ought
to be build up and increase by almost 200 percent. The stock of young fish ought
to increase much more than the spawning stock. The harvest of young fish could
in the optimal steady state be increased by almost 80 % whereas the harvest from
the spawning stock ought to be decreased. The capacity in the trawler fleet should
be decreased by more than 40 % whereas the capacity in the fleet of smaller vessels
ought to be decreased by more than 50 %.

The sensitivity analysis shows that the results are a bit, but not very, sensitive to
changes in the economic parameters such as the slope and intercept of the demand
curve and unit costs of harvest. The results are hardly sensitive at all to changes in
the parameters related to investment such as the buying or selling price of capital or
the depreciation rate. On the other hand, the results are quite sensitive to changes
in the biological parameters, that is the intrinsic growth rate and the parameters
representing the interaction between the two stocks. This indicates that future effort
is best spent on estimating the biological submodel, but of course all parts of the
total model must be reasonably correct in order to draw robust conclusions. Finally,
the results are not very sensitive to a reasonable change in the discount rate either.

Other areas for future research within the framework of this model is to find the
feedback rule, that is harvest and investment as functions of the four state variables,
the stock levels and the capital levels. Another possibility is to let both fleets harvest

on both stocks, and a third possibility is to open for excess capital in each period

20



such that in addition to determining the capital level we also determine the utilization
level of capital. This will add to the number of control variables and make the model
larger. It will have no effect on the optimal steady states as in steady state it will

never be optimal to have excess capital.
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